1.Li H-L: Floristic relationships between eastern Asia and eastern North America. Transactions of the American Philosophical Society.1952; 42(2):371–429.
2.Boufford DE, Spongberg SA: Eastern Asian-Eastern North American Phytogeographical Relationships-A History From the Time of Linnaeus to the Twentieth Century. Annals of the Missouri Botanical Garden.1983; 70(3):423–439. https://doi.org/10.2307/2992081.
3.Wu ZY: On the Significance of Pacific Intercontinental Discontinuity. Annals of the Missouri Botanical Garden.1983; 70(4):577–590. https://doi.org/https://doi.org/10.2307/2398977.
4.Tiffney BH: Perspectives on the Origin of the Floristic Similarity between Eastern Asia and Eastern North-America. Journal of the Arnold Arboretum.1985; 66(1):73–94. https://doi.org/10.5962/bhl.part.13179.
5.Donoghue MJ, Bell CD, Li JH: Phylogenetic patterns in Northern Hemisphere plant geography. International Journal of Plant Sciences.2001; 162(S6):S41-S52. https://doi.org/10.1086/323278.
6.Xiang QY, Soltis DE: Dispersal‐Vicariance Analyses of Intercontinental Disjuncts: Historical Biogeographical Implications for Angiosperms in the Northern Hemisphere. International Journal of Plant Sciences.2001; 162(S6):S29-S39. https://doi.org/10.1086/323332.
7.Nie ZL, Sun H, Li H, Wen J: Intercontinental biogeography of subfamily Orontioideae (Symplocarpus, Lysichiton, and Orontium) of Araceae in Eastern Asia and North America. Mol Phylogenet Evol.2006; 40(1):155–165. https://doi.org/10.1016/j.ympev.2006.03.012.
8.Wen J, Nie ZL, Ickert-Bond SM: Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. Journal of Systematics and Evolution.2016; 54(5):469–490. https://doi.org/10.1111/jse.12222.
9.Xiang QY, Soltis DE, Soltis PS, Manchester SR, Crawford DJ: Timing the eastern Asian-eastern North American floristic disjunction: molecular clock corroborates paleontological estimates. Mol Phylogenet Evol.2000; 15(3):462–472. https://doi.org/10.1006/mpev.2000.0766.
10.Wen J: Evolution of Eastern Asian–Eastern North American Biogeographic Disjunctions: A Few Additional Issues. International Journal of Plant Sciences.2001; 162(S6):S117-S122. https://doi.org/10.1086/322940.
11.Wei XX, Yang ZY, Li Y, Wang XQ: Molecular phylogeny and biogeography of Pseudotsuga (Pinaceae): insights into the floristic relationship between Taiwan and its adjacent areas. Mol Phylogenet Evol.2010; 55(3):776–785. https://doi.org/10.1016/j.ympev.2010.03.007.
12.Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S: Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci U S A.2012; 109(40):16217–16221. https://doi.org/10.1073/pnas.1213621109.
13.Oh SH, Potter D: Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY. Am J Bot.2005; 92(1):179–192. https://doi.org/10.3732/ajb.92.1.179.
14.Ickert-Bond SM, Wen J: Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Mol Phylogenet Evol.2006; 39(2):512–528. https://doi.org/10.1016/j.ympev.2005.12.003.
15.Zhang ML, Uhink CH, Kadereit JW: Phylogeny and biogeography of Evpimedium/Vancouveria (Berberidaceae): Western North American - East Asian disjunctions, the origin of European mountain plant taxa, and East Asian species diversity. Systematic Botany.2007; 32(1):81–92. https://doi.org/10.1600/036364407780360265.
16.Wang HD, Zheng JH, Deng CL, Liu QY, Yang SL: Fat embolism syndromes following liposuction. Aesthetic plastic surgery.2008; 32(5):731–736. https://doi.org/10.1007/s00266–008–9183–1.
17.Ran JH, Wei XX, Wang XQ: Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Mol Phylogenet Evol.2006; 41(2):405–419. https://doi.org/10.1016/j.ympev.2006.05.039.
18.Mao K, Hao G, Liu J, Adams RP, Milne RI: Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytol.2010; 188(1):254–272. https://doi.org/10.1111/j.1469–8137.2010.03351.x.
19.Wang XQ, Ran JH: Evolution and biogeography of gymnosperms. Mol Phylogenet Evol.2014; 75:24–40. https://doi.org/10.1016/j.ympev.2014.02.005.
20.Ran JH, Shen TT, Liu WJ, Wang PP, Wang XQ: Mitochondrial introgression and complex biogeographic history of the genus Picea. Mol Phylogenet Evol.2015; 93:63–76. https://doi.org/10.1016/j.ympev.2015.07.020.
21.Xiang Q, Fajon A, Li Z, Fu L, Liu Z: Thuja sutchuenensis: a rediscovered species of the Cupressaceae. Botanical Journal of the Linnean Society.2002; 139(3):305–310. https://doi.org/10.1046/j.1095–8339.2002.00055.x.
22.Farjon A: A monograph of Cupressaceae and Sciadopitys. Richmond, Surrey, UK: Royal Botanic Gardens, Kew; 2005.
23.Li JH, Xiang QP: Phylogeny and biogeography of Thuja L. (Cupressaceae), an eastern Asian and North American disjunct genus. Journal of Integrative Plant Biology.2005; 47(6):651–659. https://doi.org/10.1111/j.1744–7909.2005.00087.x.
24.Peng D, Wang XQ: Reticulate evolution in Thuja inferred from multiple gene sequences: implications for the study of biogeographical disjunction between eastern Asia and North America. Mol Phylogenet Evol.2008; 47(3):1190–1202. https://doi.org/10.1016/j.ympev.2008.02.001.
25.Mciver EE, Basinger JF: The Morphology and Relationships of Thuja-Polaris Sp-Nov (Cupressaceae) from the Early Tertiary, Ellesmere Island, Arctic Canada. Canadian Journal of Botany-Revue Canadienne De Botanique.1989; 67(6):1903–1915. https://doi.org/10.1139/b89–242.
26.Cui YM, Sun B, Wang HF, Ferguson DK, Wang YF, Li CS, Yang J, Ma QW: Exploring the Formation of a Disjunctive Pattern between Eastern Asia and North America Based on Fossil Evidence from Thuja (Cupressaceae). PLoS One.2015; 10(9):e0138544. https://doi.org/10.1371/journal.pone.0138544.
27.Soltis PS, Soltis DE: A conifer genome spruces up plant phylogenomics. Genome Biol.2013; 14(6):122. https://doi.org/10.1186/gb–2013–14–6–122.
28.Mao K, Ruhsam M, Ma Y, Graham SW, Liu J, Thomas P, Milne RI, Hollingsworth PM: A transcriptome-based resolution for a key taxonomic controversy in Cupressaceae. Ann Bot.2019; 123(1):153–167. https://doi.org/10.1093/aob/mcy152.
29.Ran J-H, Shen T-T, Wang M-M, Wang X-Q: Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proceedings of the Royal Society B: Biological Sciences.2018; 285(1881):20181012. https://doi.org/10.1098/rspb.2018.1012.
30.Rigault P, Boyle B, Lepage P, Cooke JE, Bousquet J, MacKay JJ: A white spruce gene catalog for conifer genome analyses. Plant Physiol.2011; 157(1):14–28. https://doi.org/10.1104/pp.111.179663.
31.Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theissen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S: The Norway spruce genome sequence and conifer genome evolution. Nature.2013; 497(7451):579–584. https://doi.org/10.1038/nature12211.
32.Parks M, Cronn R, Liston A: Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol.2009; 7(1):84. https://doi.org/10.1186/1741–7007–7–84.
33.Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM: Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biol Evol.2010; 2:504–517. https://doi.org/10.1093/gbe/evq036.
34.Zhu A, Fan W, Adams RP, Mower JP: Phylogenomic evidence for ancient recombination between plastid genomes of the Cupressus-Juniperus-Xanthocyparis complex (Cupressaceae). BMC Evol Biol.2018; 18(1):137. https://doi.org/10.1186/s12862–018–1258–2.
35.Qu XJ, Jin JJ, Chaw SM, Li DZ, Yi TS: Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae). Scientific Reports.2017; 7:41005. https://doi.org/10.1038/srep41005.
36.Raubeson LA, Jansen RK: A Rare Chloroplast-DNA Structural Mutation Is Shared by All Conifers. Biochemical Systematics and Ecology.1992; 20(1):17–24. https://doi.org/10.1016/0305–1978(92)90067-N.
37.Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM: Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biol Evol.2011; 3:1284–1295. https://doi.org/10.1093/gbe/evr095.
38.Yi X, Gao L, Wang B, Su YJ, Wang T: The Complete Chloroplast Genome Sequence of Cephalotaxus oliveri (Cephalotaxaceae): Evolutionary Comparison of Cephalotaxus Chloroplast DNAs and Insights into the Loss of Inverted Repeat Copies in Gymnosperms. Genome Biology and Evolution.2013; 5(4):688–698. https://doi.org/10.1093/gbe/evt042.
39.Guo W, Grewe F, Cobo-Clark A, Fan W, Duan Z, Adams RP, Schwarzbach AE, Mower JP: Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biol Evol.2014; 6(3):580–590. https://doi.org/10.1093/gbe/evu046.
40.Qu XJ, Wu CS, Chaw SM, Yi TS: Insights into the Existence of Isomeric Plastomes in Cupressoideae (Cupressaceae). Genome Biol Evol.2017; 9(4):1110–1119. https://doi.org/10.1093/gbe/evx071.
41.Chaw S-M, Wu C-S, Sudianto E: Evolution of Gymnosperm Plastid Genomes. In: Plastid Genome Evolution. Edited by Chaw S-M, Jansen RK, vol. 85: Academic Press; 2018: 195–222.
42.Adelalu KF, Qu XJ, Sun YX, Deng T, Sun H, Wang HC: Characterization of the complete plastome of western red cedar, Thuja plicata (Cupressaceae). Conservation Genetics Resources.2019; 11(1):79–81. https://doi.org/10.1007/s12686–017–0948–1.
43.Palmer JD, Thompson WF: Chloroplast DNA Rearrangements Are More Frequent When a Large Inverted Repeat Sequence Is Lost. Cell.1982; 29(2):537–550. https://doi.org/10.1016/0092–8674(82)90170–2.
44.Zhang X, Zhang HJ, Landis JB, Deng T, Meng AP, Sun H, Peng YS, Wang HC, Sun YX: Plastome phylogenomic analysis of Torreya (Taxaceae). Journal of Systematics and Evolution.2019. https://doi.org/10.1111/jse.12482.
45.Palmer JD: Comparative organization of chloroplast genomes. Annu Rev Genet.1985; 19(1):325–354. https://doi.org/10.1146/annurev.ge.19.120185.001545.
46.Zhang Y, Ma J, Yang B, Li R, Zhu W, Sun L, Tian J, Zhang L: The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species. Gene.2014; 540(2):201–209. https://doi.org/10.1016/j.gene.2014.02.037.
47.Hirao T, Watanabe A, Kurita M, Kondo T, Takata K: Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol.2008; 8(1):70. https://doi.org/10.1186/1471–2229–8–70.
48.Won H, Renner SS: Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)—clock calibration when outgroup relationships are uncertain. Syst Biol.2006; 55(4):610–622.
49.Ickert-Bond SM, Rydin C, Renner SS: A fossil-calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America. Journal of Systematics and Evolution.2009; 47(5):444–456. https://doi.org/10.1111/j.1759–6831.2009.00053.x.
50.Biffin E, Hill RS, Lowe AJ: Did Kauri (Agathis: Araucariaceae) really survive the Oligocene drowning of New Zealand? Syst Biol.2010; 59(5):594–602. https://doi.org/10.1093/sysbio/syq030.
51.Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S: Recent synchronous radiation of a living fossil. Science.2011; 334(6057):796–799. https://doi.org/10.1126/science.1209926.
52.Mao K, Milne RI, Zhang L, Peng Y, Liu J, Thomas P, Mill RR, Renner SS: Distribution of living Cupressaceae reflects the breakup of Pangea. Proc Natl Acad Sci U S A.2012; 109(20):7793–7798. https://doi.org/10.1073/pnas.1114319109.
53.Li J, Davis CC, Donoghue MJ, Kelley S, Del Tredici P: Phylogenetic relationships of Torreya (Taxaceae) inferred from sequences of nuclear ribosomal DNA ITS region. Harvard Papers in Botany.2001:275–281.
54.Liu Y-S, Mohr BAR, Basinger JF: Historical biogeography of the genus Chamaecyparis (Cupressaceae, Coniferales) based on its fossil record. Palaeobiodiversity and Palaeoenvironments.2009; 89(3–4):203–209. https://doi.org/10.1007/s12549–009–0010–8.
55.Paull R, Hill RS: Oligocene Austrocedrus from Tasmania (Australia): Comparisons with Austrocedrus chilensis. International Journal of Plant Sciences.2008; 169(2):315–330. https://doi.org/10.1086/523963.
56.Shi G, Zhou Z, Xie Z: A new Oligocene Calocedrus from South China and its implications for transpacific floristic exchanges. Am J Bot.2012; 99(1):108–120. https://doi.org/10.3732/ajb.1100331.
57.Sun B, Cui YM, Wang HF, Ferguson DK, Xiang QP, Ma QW, Wang YF: Recognizing the species of Thuja (Cupressaceae) based on their cone and foliage morphology. Phytotaxa.2015; 219(2):101–117. https://doi.org/10.11646/phytotaxa.219.2.1.
58.Yang JB, Li DZ, Li HT: Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Resour.2014; 14(5):1024–1031. https://doi.org/10.1111/1755–0998.12251.
59.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol.2012; 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021.
60.Wyman SK, Jansen RK, Boore JL: Automatic annotation of organellar genomes with DOGMA. Bioinformatics.2004; 20(17):3252–3255. https://doi.org/10.1093/bioinformatics/bth352.
61.Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res.1997; 25(5):955–964. https://doi.org/10.1093/nar/25.5.955.
62.Lohse M, Drechsel O, Kahlau S, Bock R: OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res.2013; 41(Web Server issue):W575–581. https://doi.org/10.1093/nar/gkt289.
63.Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One.2010; 5(6):e11147. https://doi.org/10.1371/journal.pone.0011147.
64.Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.1999; 27(2):573–580.
65.Zhang D, Gao F, Li WX, Jakovlić I, Zou H, Zhang J, Wang GT: PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. bioRxiv.2018:489088. https://doi.org/10.1101/489088.
66.Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol.2013; 30(4):772–780. https://doi.org/10.1093/molbev/mst010.
67.Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol.2007; 56(4):564–577. https://doi.org/10.1080/10635150701472164.
68.Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics.2014; 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033.
69.Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics.2001; 17(8):754–755. https://doi.org/10.1093/bioinformatics/17.8.754.
70.Rambaut A, Drummond A: FigTree, ver. 1.4. 2. Available: http:/tree bio ed ac uk/software/figtree/Accessed on.2015; 28.
71.Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology.2007; 7(1):214. https://doi.org/10.1186/1471–2148–7–214.
72.Kumar S, Stecher G, Li M, Knyaz C, Tamura K: MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol.2018; 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096.
73.Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA: Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol.2018; 67(5):901–904. https://doi.org/10.1093/sysbio/syy032.
74.Yu Y, Harris AJ, Blair C, He X: RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol.2015; 87:46–49. https://doi.org/10.1016/j.ympev.2015.03.008.
75.Ree RH, Smith SA: Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol.2008; 57(1):4–14. https://doi.org/10.1080/10635150701883881.