Ahmadi, S., Rajabi, Z., Marandi, M.V. (2018). Evaluation of the antiviral effects of aqueous extracts of red and yellow onions (Allium Cepa) against avian influenza virus subtype H9N2. Iranian Journal of Veterinary Science and Technology. 2018-2 (19)
Ahn, D. G., Choi, J. K., Taylor, D. R. & Oh, J. W. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates.Arch. Virol.157, 2095–2104 (2012).
Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E., and Gottesman, M. M. (2003). P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485.doi: 10.1038/sj.onc.1206948
Aristyani S., Nur M.I., Wldyarti S., Sumitro S.B. (2018). In silico study of active compounds ADMET profiling in Curuma xanthorrhiza Roxb and Tamarindus indica as Tuberculosis Treatment. Journal Jsmu Indonesia 3(3): 101-108
Borst, P., and Elferink, R. O. (2002). Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71, 537–592. doi: 10.1146/annurev.biochem.71.102301.093055
Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell 2014; 5: 369-81.
Chen, C. H., Chou, T. W., Cheng, L. H., Ho, C. W. (2011). In -vitro anti-adenoviral activity of five Allium plants. Journal of the Taiwan Institute of Chemical Engineers, 42(2):228–232.
Clementz, M.A., Chen, Z., Banach, B.S., Wang, Y., Sun, L., Ratia, K., Baez-Santos, Y.M., Wang, J., Takayama, J., Ghosh, A.K., Li, K., Mesecar, A.D., Baker, S.C., 2010. Deubiquitinating and interferon antagonism activities of coronavirus papainlike proteases. J. Virol. 84, 4619–4629
Daina A. and Zoete, V. (2016). ABOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11,1117– 1121
Darvas F, Keseru G, Papp A, Dormán G, Urge L, Krajcsi P (2002)In Silico and Exsilico ADME approaches for drug discovery. Top Med Chem 2:1287–1304
De Ponti, F., Poluzzi, E., and Montanaro, N. (2001). Organising evidence on QT prolongation and occurrence of Torsades de Pointes with nonantiarrhythmic drugs: a call for consensus. Eur. J. Clin. Pharmacol. 57, 185–209. doi: 10.1007/s002280100290
Devaraj, S. G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Peters. C.J.Tseng, C.K., Baker, S.C., Li, K. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 282, 32208-32221 (2007).
Efferth T and Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Current Drug Targets. 2011; 12(1):122–132.
Faccin-Galhardi, L.C., Yamamoto, K.A., Ray, S., Ray, B., Linhares, R.E.C., Nozawa, C. (2012). The in vitro antiviral property of Azadirachta indica polysaccharides for poliovirus. Journal of Ethnopharmacology 142 (2012) 86–90
Flockhart DA. 2007. Drug Interactions: cytochrome P450 Drug Interaction Table. Indiana University School of Medicine’/clinpharm/ddis/clinical-table/’’Accessed August 12th 2018
Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S. Severe Acute Respiratory Syndrome Coronavirus Papain-Like Protease Ubiquitin-Like Domain and Catalytic Domain Regulate Antagonism of IRF3 and NF-kappa B Signaling. J Virol 83, 6689-6705 (2009).
Han, Y. S. Chang, G.G., Juo, C.G., Lee, H.J., Yeh, S.H., Hsu, J.T., Chen, X. Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): Expression, purification, characterization, and inhibition. Biochemistry-Us 44, 10349-10359 (2005).
Harazem, R., Rahman, S., Kenawy, A. 2019. Evaluation of Antiviral Activity of Allium Cepa and Allium Sativum Extracts Against Newcastle Disease Virus. Alexandria Journal of Veterinary Sciences, 61(1).
Harcourt, B. H., Jukneliene, D., Kanjanahaluethai, A., Bechil, J., Severson, K.M., Smith, C.M., Rota, P.A., Baker, S.C. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 78, 13600-13612 (2004
Hegyi, A. and Ziebuhr, J. Conservation of substrate specificities among coronavirus main proteases. J. Gen. Virol. 83, 595–599 (2002).
Hilgenfeld, R. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 281, 4085–4096 (2014). doi:10.1111/febs.12936
Kirchdoerfer,, R.N. and Ward, A.B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. NATURE COMMUNICATIONS. 10:2342 1-9. https://doi.org/10.1038/s41467-019-10280-3
Kumar, S., Pandey, A. K. 2013. Chemistry and Biological Activities of Flavonoids: An Overview. Pages 1–16
Laporte M. and Naesens, L. (2017). Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Current Opinion in Virology. 24:16–24
Lehmann, K. C., Gulyaeva, A., Zevenhoven-Dobbe, J.C., Janssen, G.M.C., Ruben, M., Overkleeft, H.S., Veelen, P.A., Samborskiy, D.V., Kravchenko, A.A., Leontovich, A.M., Sidorov, I.A., Snijder, E.J., Posthuma, C.C., Gorbalenya, A.E. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerasecontaining protein of all nidoviruses. Nucleic Acids Res.43, 8416–8434 (2015)
Lennart, M.R., Reinke, M., Spiegel, M., Plegge, T., Hartleib, A., Nehlmeier, I., Gierer, S., Hoffmann, M., Hofmann-Winkle, H., Winkler, M., P€ohlmann, S. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2, PloS One 12 (6) (2017), e0179177
Li S.W, Wang C.Y, Jou Y.J, Huang S.H, Hsiao L.H, Wan L, Lin, Y.J., Kung, S.H., Lin, C.W. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6.Int J Mol Sci 2016; 17: 678.
Lim, L., Shi, J., Mu, Y., Song, J. Dynamically-driven enhancement of the catalytic machinery of the SARS 3C-like protease by the S284-T285-I286/A mutations on the extra domain. PLOS ONE 9, e101941 (2014)
Lindner, H.A., Lytvyn, V., Qi, H., Lachance, P., Ziomek, E., Menard, R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys 466, 8-14 (2007).
McDonald, S. M. RNA synthetic mechanisms employed by diverse families of RNA viruses.Wiley Interdiscip. Rev. RNA4, 351–367 (2013).
Mielech, A. M., Kilianski, A., Baez-Santos, Y. M., Mesecar, A. D., and Baker, S. C. (2014) MERS-CoV papain-like protease has deISGylating and deubiquitinating activities.Virology 450−451,64−70.
Parida, M.M., Upadhyay, C., Pandya, G., Jana, A.M. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication, J. Ethnopharmacol. 79 (2002) 273–278
Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y. & Jung, S. H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem. 59, 6595–6628 (2016).
Rut, W., Lv, Z., Zmudzinski, M., Patchett, S., Nayak, D., Snipas, S.J., Oualid, F.E., Huang, T.T., Bekes, M., Drag, M., Olsen, S.K. (2020). Activity profiling and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design. BioRxIV preprint. https://doi.org/10.1101/2020.04.29.068890
Sanguinetti, M. C., and Tristani-Firouzi, M. (2006). hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469. doi: 10.1038/nature04710
Schyman P, Liu R, Desai V and Wallqvist A (2017) vNN Web Server for ADMET Predictions. Front. Pharmacol. 8:889. doi: 10.3389/fphar.2017.00889
Subissi, L., Posthumja, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya A.E., Decroly E., Snijder, E.J., Canard, B., Imbert, I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA111, E3900–E3909 (2014).
Trott, O., Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31: 455-461
Waring, M. J., Arrowsmith, J., Leach, A. R., Leeson, P. D., Mandrell, S., Owen,R. M., et al. (2015). An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14, 475–486. doi: 10.1038/nrd4609
WHO (2020). WHO Coronavirus Disease (COVID-19) Dashboard. Accessed 27/07/2019, 7: 24 pm CEST. Available online, https://covid19.who.int/?gclid=EAIaIQobChMIp-a2oLLu6gIVB7LtCh0OeQGkEAAYASAAEgJJcfD_BwE
Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. https://doi.org/10.1016/j.apsb.2020.02.008
Xu, J., Song, X., Yin, Z.Q., Cheng, A.C., Jia, R.Y., Deng, Y.X., Ye, K.C., Shi, C.F., Lv, C., Zhang, W. (2012). Antiviral activity and mode of action of extracts from neem seed kernel against duck plague virus in vitro. Poultry Science. 91: 2802–2807. http://dx.doi.org/ 10.3382/ps.2012-02468
Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., and Chen, Z. (2014) Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease.J. Gen. Virol. 95, 614−626.
Yuan L, Chen Z, Song S, Wang S, Tian C, Xing G., Chen, X., Xiao, Z.X., He, F., Zhang, L. p53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J Biol Chem 2015; 290: 3172-82.
Zhang, J., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Sscience. 1.8
Zong A, Cao, H and Wang F. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydrate Polymers. 2012; 90(4):1395–1410.