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Abstract This work focuses on the consensus problem
of multi-agent systems (MASs) under event-triggered
control (ETC) subject to denial-of-service (DoS) jam-

ming attacks. To reduce the cost of communication net-
works, a novel event-triggering mechanism (ETM) is
applied to the sleeping interval to determine whether

the sampled signal should be transmitted or not. Un-
like periodic DoS attacks model, the DoS attacks oc-
currence are irregular , where attack attributes such as

attack frequency and attack duration are taken into ac-
count. Moreover, compared with the fixed topological
graph, the communication topologies may change due

to DoS jamming attacks in this work. In view of this,
based on the piecewise Lyapunov functional, sufficien-
t conditions are derived to guarantee that consensus

problem of the MASs can be solved. Finally, the effec-
tiveness and correctness of the theoretical results are
verified by a numerical example.

Keywords Multi-agent Systems · Event-triggering
mechanism · DoS jamming attacks · Consensus

1 Introduction

In recent years, the consensus control issue of MASs
has been diffusely investigated and received tremendous

attention in many domains, such as teaming of robot-
s, traffic control, formation control and so on [1–6].
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Generally speaking, consensus control aims to design
a valid distributed control protocol that uses the infor-
mation of adjacent agents in the system to make the

state of all agents reach an agreement. Until now, var-
ious distributed control schemes have been developed
for leader-following consensus problems [7,8] and lead-

erless consensus problems [9–12].

However, when discussing the consensus problems

of MASs, some existing results are based on ideal con-
ditions of infinite network resources [9–12]. To mini-
mize the waste of communication and computing re-

sources, a time-triggering mechanism was first proposed
for MASs in [13], which transmits measurements after
fixed time intervals. Unfortunately, this strategy may

still cause unnecessary communication and consump-
tion of computing resources. To further address this
issue, various ETC strategies were proposed [14–19],

where the data will be broadcasted depends whether
the pre-designed event-triggering condition is met or
not. For example, the authors in [14] proposed a central-

ized output feedback ETC to achieve consensus of lin-
ear MASs. By applying the centralized ETC protocol,
leader-following consensus issue of MASs with different

structure of topologies was investigated in [15]. Wang et
al. [16] introduced a centralized ETC scheme with inter-
nal dynamic variables to investigate the consensus issue

of MASs. It is noteworthy that centralized ETC ap-
proaches require information from all agents of MASs,
which may cause unnecessary waste of resources. To im-

prove the limited network resources, distributed ETC
strategies were proposed for MASs in [17–20]. A new
iterative event-triggered analysis method was proposed

in [17] to avoid continuous sampling transmission be-
tween adjacent states in MASs. In [18], the authors pro-
posed a new event-triggered distributed predictive con-

trol method, which not only realizes the asynchronous



2 Mingyue Xiong et al.

exchange of information, but also achieves the balance

between efficient resource utilization and control perfor-
mance. To solve the issue of robust cooperative output
regulation for uncertain linear MASs with and without

extra disturbances, two adaptive ETC protocols based
on internal model theories were proposed in [19], where
the frequency of information exchange between agents

is greatly reduced and Zeno behavior is excluded.

Furthermore, with the development of spatially dis-

tributed technology, MASs are usually considered to
be a class of networked control systems that are brit-
tle to cyber-attacks [21]. The communication channel

between agents is easily interrupted or broken due to
cyber-attacks, which will lead to the unavailable of in-
formation exchange between agents and system insta-

bility [22]. Therefore, it is essential to discuss the im-
pacts of cyber-attacks in the investigation of various
MASs [23–26]. In general, cyber-attacks can be catego-
rized into deception attacks [27–29], replay attacks [30–

32] and DoS jamming attacks [33–35]. Among them,
DoS jamming attack is the most important and diffi-
cult to address. The authors considered asynchronous

DoS jamming attacks in [36], where MASs can achieve
consensus by restricting the frequency and duration of
valid DoS jamming attacks. In [37], the authors estab-

lished a hybrid dynamic model for the formation control
of nonlinear MASs under DoS jamming attacks, which
gives the calculation method of transmission interval

with DoS attacks. Based on a novel security controller,
the frequency and duration of DoS jamming attacks
were obtained in [7] to guarantee that the tracking error

system converges to zero for MASs under the DoS jam-
ming attacks. The authors in [8] developed a distributed
security consensus control method for leader-following

MASs with DoS jamming attacks, which successfully
overcome the issue of inaccurate control input calcula-
tion within the attacking periods. By taking the DoS

jamming attacks into account, leader-following robust
H∞ consensus of heterogeneous MASs was presented
in [33]. However, how to design a distributed event-

triggered controller to achieve consensus of MASs in
the presence of DoS jamming attacks, which still an
open challenge issue and motivates this work.

In this article, we investigate the consensus issue
of MASs under DoS jamming attacks by a distributed

event-triggered controller. The main contributions of
this paper are summarized as follows.

1) Compared with [22,38,39] where the periodic DoS
jamming attacks are considered, the aperiodic DoS jam-
ming attacks are proposed by a time-sequence way in

this work, which are more general in practice.

2) Different from the centralized ETC approaches

in [14–16], a distributed discrete ETC method is pro-

posed in this work to avoid continuous information ex-

change among adjacent agents, which not only improves
the network communication but also achieves consensus
control for MASs under DoS jamming attacks.

3) Different from [21,40] where the DoS jamming at-

tacks active/sleeping periods need to known, this work
does not need such restrictions as the attack frequency
and duration of DoS jamming attacks are analyzed.

Notations:
Rn n-dimensional real vector space
Rn×m n×m real matrix

T matrix transposition
∥ · ∥ 2-norm
IN N -dimensional identity matrix

I identity matrix with appropriate dimension
⊗ Kronecker product
λmax(X) the maximum eigenvalue of X

λmin(X) the minimum eigenvalue of X
N the set of non-negative integers
P > 0 real symmetric matrix P is positive definite

2 Preliminary and Problem Formulation

2.1 Graph theory

A directed graph is represented by G= (P,B,W)

where P = {1, 2, . . . , N} denotes a set of nodes, B ⊆
{(i, j), i, j ∈ P} denotes a set of edges, andW= [wij ]N×N

denotes a weighted adjacency matrix with non-negative

element wij , i, j = 1, 2, . . . , N . The ordered pair of n-
odes (pi, pj) represents an edge bij in the graph G ,
and bij ∈ B if and only if wij > 0. And an element

{bij = (pi, pj)} ∈ B denotes that node i can obtain in-
formation from node j. Laplacian matrix L = [lij ]N×N

of G as L = W̄ − W where W̄ = diag{W1, · · · ,WN}
with Wi =

∑
j∈Ni

wij . If there exists one node that can

reach any other node through a directed path, we can
say G has a directed spanning tree.

2.2 System Model

Consider the MASs consisting of N agents, a model
of the ith agent shown in Fig. 1 can be represented as:

ẋi(t) = Axi(t) +Bui(t) + Cf(xi(t)), (1)

where xi(t) ∈ Rn is the state variable, ui(t) ∈ Rm is

the control input of the ith agent. A, B, and C are re-
al matrices with appropriate dimensions. f(xi(t)) is a
nonlinear vector-valued function satisfying the follow-

ing assumption.
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Fig. 1: Structure of ETC for agent i.

Assumption 1: The nonlinear function f(xi(t)) satis-
fies the following condition:

∥f(xi(t))∥ ≤ ∥Hxi(t)∥ ,

where H is a known constant matrix representing the

upper bound of the nonlinearity.

2.3 Denial-of-Service Attack Model

As a result of the openness of networks, the com-
munication channels are easily destroyed by malicious

attacks, which is one of the main factors threatening the
security of the system. Then, the sampled data trans-
mitted over the communication networks may be lost

and the whole network may collapse in serious cases. In
addition, the cyber-attacks may also destroy the com-
munication topology of MASs.

This paper considers the case that the communica-
tion networks are disrupted by DoS jamming attacks
when transmitting the measurement signals. It should

be noted that DoS jamming attacks require a certain
amount of energy. Assume that malicious attackers will
consume a certain amount of energy when sending DoS

jamming signals. Therefore, the attackers need to enter
a sleep state to save energy for the next attacks. Fig. 2
shows an example of signal transmission via an event-

triggering mechanism (ETM) under the DoS jamming
attacks model.

Let {ln}n∈N denote the time sequence of the DoS

jamming attacks, and a DoS jamming attack is launched
at time instants ln. L1,n = [ln, ln +△n) denotes the in-
terval of the (n+1)-th DoS jamming attacks, where △n

indicates the length of the (n+ 1)-th DoS jamming at-
tacks satisfying ln+1 > ln +△n. L2,n = [ln +△n, ln+1)
represent the sleeping period of the DoS jamming at-

tacks.
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Fig. 2: Example of transmitted signals via an ETM un-
der DoS jamming attacks.

Similar to [41], for given t and ι

za(ι, t) =
∪
n∈N

L1,n

∩
[ι, t), (2)

zc(ι, t) = [ι, t)\za(ι, t). (3)

za(ι, t) and zc(ι, t) denote sets of time intervals for the
active and sleeping intervals of DoS jamming attacks,

respectively.

The following assumptions are introduced to de-
scribe the attack duration and the attack frequency.

Assumption 2: (Attack Duration [42]) For any T2 >

T1 > t0, za(T1,T2) ≤ T0 + T2−T1

τa
represent attack

duration over [T1,T2) for all T0 ≥ 0 and τa > 0.

Assumption 3: (Attack Frequency [42]) For any T2 >
T1 > t0, Nf (T1,T2) represent the total number of DoS
jamming attack occurring over [T1,T2). Then, Ff (T1,T2)

=
Nf (T1,T2)
T2−T1

denote the attack frequency over [T1,T2)

for all T2 > T1 > t0.

2.4 A Distributed Event-Triggered Consensus Protocol

In order to alleviate the communication load of the
networks, inspired by [40], a distributed ETM is de-
signed. By using this mechanism, sample data of each

agent will not be transmitted through the network un-
less the event-triggering condition is met. Under the
mechanism, the triggering instant is described by:

tk+1,nh = tk,nh+ min
m≥1

{
mh|(ψi

k,n(t))
T
Ωiψ

i
k,n(t) (4)

> σxTi (tk,nh+mh)Ωixi(tk,nh+mh)
}
,
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where parameter σ ∈ [0, 1), Ωi > 0, m ∈ N+, mh ∈
(tk,nh, tk+1,nh] denotes the m-th sampling instant, and
ψi
k,n(t) = xi(tk,nh) − xi(tk,nh +mh), tk,nh as the kth

triggered instant in L2,n, k ∈ {1, 2, . . . , km}, km =

sup{k|tk,nh < ln+1}, denote t1,nh = ln+△n, tkm+1,nh =
ln+1.

Remark 1: From (4), we can see that only the sampled
data satisfying the triggering condition will be trans-
mitted through the network, which greatly reduces the
network resources. Note that h denotes the discrete

sampling period of the sensors, so-called Zeno behavior
will not happen here. If σ = 0, then the proposed ETM
will turn into a time-triggering mechanism.

Remark 2: Combined with the more common scenario
in practice, assuming that the triggering condition is

not met in L2,n, there will be a situation that tkm+1,nh
does not exist. Compared with [22] and [43] where the
above case is not considered, we define tkm+1,nh = ln+1

when the triggering condition is invalid in this paper,
which makes the article more organized.

Partitioning L2,n into the triggering interval ϖk,n =
[tk,nh, tk+1,nh), k = 1, 2, . . . , km. Then it has Θk,n =

ϖk,n

∩
L2,n, we can get L2,n =

∪km

k=1Θk,n. Then ϖk,n

can be divided as ϖk,n =
∪Lm

L=0ΞL,k where ΞL,k =
[tk,nh+ Lh, tk,nh+ (L+ 1)h), L ∈ {0, 1, . . . , Lm}, Lm =

sup{L|tk,nh + Lh < tk+1,n}. It is obvious that L2,n =∪km

k=1

∪Lm

L=0ΞL,k

∩
Θk,n.

According to the above analysis, the ETC is de-
scribed by:

ui(t) =


αK

∑
j∈Ni

w
σ(t)
ij (xj(tk,nh)− xi(tk,nh)),

if t ∈ ΞL,k

∩
Θk,n

∩
L2,n,

0, if t ∈ L1,n,

(5)

where α > 0 denotes the coupling strength of the MASs,
K is the controller gain, σ(t) is a piecewise function,
σ(t) : [0,+∞) → S = {1, 2, . . . , s} is utilized to de-

scribe the switching signal, and Gσ(t) ∈ G̃, for t ∈
ΞL,k

∩
Θk,n

∩
L2,n, where G̃ = {G1,G2, . . . ,Gs}, s >

1, represents the set of all possible topological graphs

when the MASs recover from DoS attacks. w
σ(t)
ij stand-

s for the adjacency element of Gσ(t). xi(tk,nh) is the
latest broadcast state of agent i with a time sequence

{tk,nh}k∈N.

In what follows, we can define τL,k(t) ∈ [0, h) as

time varying delay variable

τL,k(t) =



t− tk,nh t ∈ Ξ0,k

...

t− tk,nh− (Lm − 1)h t ∈ ΞL,k

t− tk,nh− Lmh t ∈ ΞLm,k

and

ψi
k,n(t) =



0 t ∈ Ξ0,k

...

xi(tk,nh)− xi(tk,nh+ (Lm − 1)h) t ∈ ΞL,k

xi(tk,nh)− xi(tk,nh+ Lmh) t ∈ ΞLm,k

Further, the event-triggered sampled states xi(tk,nh)

and xj(tk,nh) can be given as follows:{
xi(tk,nh) = ψi

k,n(t) + xi(t− τL,k(t)),

xj(tk,nh) = ψj
k,n(t) + xj(t− τL,k(t)).

(6)

Then, the controller (5) can be rewritten as

ui(t) =


αK

∑
j∈Ni

w
σ(t)
ij

(
ψj
k,n(t) + xj(t− τL,k(t))

−ψi
k,n(t)− xi(t− τL,k(t))

)
,

if t ∈ ΞL,k

∩
Θk,n

∩
L2,n,

0, if t ∈ L1,n.

(7)

Substituting (7) into (1), we have

ẋ(t) =


(IN ⊗A)x(t)− α(Lσ(t) ⊗BK)x(t− τL,k(t))

−α(Lσ(t) ⊗BK)ψk,n(t) + (IN ⊗ C)F (x(t)),

if t ∈ ΞL,k

∩
Θk,n

∩
L2,n,

(IN ⊗A)x(t) + (IN ⊗ C)F (x(t)),
if t ∈ L1,n,

(8)

where F (x(t)) = [fT (x1(t)), . . . , f
T (xN (t))]T , Lσ(t) =

[l
σ(t)
ij ]N×N , ψk,n(t) = [(ψ1

k,n(t))
T , . . . , (ψN

k,n(t))]
T , x(t−

τL,k(t)) = [xT1 (t− τL,k(t)), . . . , x
T
N (t− τL,k(t))]

T , and
x(t) = [xT1 (t), . . . , x

T
N (t)]T . And ϕ(t) is the supplement-

ed initial condition of the state x(t) with ϕ(0) , ϕ0.
The aim of this article is to devise an event-triggering

controller to converge the states of all agents to a consis-

tent level. In view of this, we need the following lemma.
Lemma 1: [44] For any matrices F ∈ Rn×n and Λ ∈

Rn×n that satisfy

[
F ∗
ΛT F

]
≥ 0, the following inequality

holds for κ(t) ∈ [0, κ̄] :

− κ̄

∫ t

t−κ̄

ȯT (s)F ȯ(s)ds

≤õ(t)T
 −F ∗ ∗
FT − ΛT −2F + Λ+ ΛT ∗

ΛT FT − ΛT −F

 õ (t)
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where õ (t) =

 o(t)
o(t− κ(t))
o(t− κ̄)

, and ∗ is utilized to depict

the entries implied by symmetry.

3 Main results

The following section mainly consists of two the-

orems, before given Theorem 1, we first present the
Lemma 2 . Then, sufficient conditions are derived to
guarantee the exponential stability of the closed-loop

system (8) under DoS jamming attacks in Theorem 1.
In Theorem 2, we solve the problem of system param-
eters.

Consider following piecewise Lyapunov functional:

Vf (t) = Vf1(t) + Vf2(t) + Vf3(t), (9)

where f = 1, when t ∈ [ΞL,k

∩
Θk,n

∩
L2,n), and f = 2,

when t ∈ L1,n,

Vf1(t) = xT (t)(IN ⊗ Pf )x(t)

Vf2(t) =

∫ t

t−h

e(−1)fµf (t−θ)xT (θ)Rfx(θ)dθ

Vf3(t) = h

∫ t

t−h

∫ t

θ

e(−1)fµf (t−φ)ẋT (φ)Zf ẋ(φ)dφdθ

Lemma 1 For given scalars h > 0, µ1 > 0, µ2 > 0,

σ > 0, and matrices K, H, the functions defined in (9)
satisfy

V1(t) ≤ e−µ1(t−(ln+△n))V1(ln +△n),

V2(t) ≤ eµ2(t−ln)V2(ln),
(10)

if there exist matrices Pf > 0, Rf > 0, Zf > 0, and
Ω > 0, Uf with appropriate dimensions satisfying :

ωf < 0, (11)

0 <

[
Zf ∗
Uf Zf

]
, f = 1, 2, (12)

where the elements of ωf are described in detail in Ap-
pendix A.

Proof See Appendix B.

Based on Lemma 2, we will analyze of exponential

stability of system (8) under DoS jamming attacks.

Theorem 1. For given scalars h > 0, µ1 > 0, µ2 > 0,
λ1 > 0, λ2 > 0, and matrices K, H, if Lemma 2 holds
and there exist matrices Pf > 0, Rf > 0, Zf > 0,

f = 1, 2 and Ω > 0, Uf with compatible dimensions
satisfying the following conditions:

IN ⊗ P1 < λ2(IN ⊗ P2),

IN ⊗ P2 < λ1e
(µ1+µ2)h(IN ⊗ P1),

(13)

Rf − λ3−fR3−f < 0, (14)

Zf − λ3−fZ3−f < 0 (15)

and

Attack Frequency:

Ff (0, t) =
Nf (0, t)

t
≤ µ∗

1 + TD
ln(λ1λ2) + (µ1 + µ2)h

, (16)

where µ∗
1 ∈ (0, µ1), µ1 − µ∗

1 ≥ TD ≥ 0.

Attack Duration:

τa ≥ µ1 + µ2

µ1 − µ∗
1 − TD

. (17)

Then, the closed-loop system (8) is exponential sta-
ble with the ETC under DoS jamming attacks.

Proof V1(t) and V2(t) are describable at different time
intervals, it follows that:

V (t) =


e−µ1(t−ln−1−∆n−1)V1(ln−1 +∆n−1),

if t ∈ [ln−1 +△n−1, ln),

eµ2(t−ln)V2(ln) if t ∈ [ln, ln +△n).

(18)

If t ∈ [ln−1 +△n−1, ln), we can get

V (t) ≤ λ2e
−µ1(t−ln−1−∆n−1)V1((ln−1 +∆n−1)

−)

... (19)

≤ en[ln(λ1λ2)+(µ1+µ2)h]eµ2|za(0,t)|e−µ1|zc(0,t)|V1(0).

If t ∈ [ln, ln +△n), it leads to

V (t) ≤ λ1e
µ2(t−ln)e(µ1+µ2)hV2(l

−
n )

... (20)

≤ e(n+1)[ln(λ1λ2)+(µ1+µ2)h]eµ2|za(0,t)|e−µ1|zc(0,t)|V1(0).

Combining (19) and (20), it is easy to get:

V (t) ≤e(n+1)[ln(λ1λ2)+(µ1+µ2)h]

× eµ2|za(0,t)|e−µ1|zc(0,t)|V1(0).
(21)
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Besides, according to the property of the Assumption

3, we can know the number of DoS jamming attacks in
the interval [0, t) is Nf (0, t) = n + 1. Therefore, one
obtains

V (t) ≤eNf (0,t)[In(λ1λ2)+(µ1+µ2)h]

× eµ2|ẑa(0,t)|e−µ1|ẑc(0,t)|V1(0).
(22)

Note that

ẑa(0, t) = za(0, t), (23)

ẑc(0, t) = t− ẑa(0, t). (24)

Substituting (23) and (24) into (22) yields

V (t) ≤eNf (0,t)[In(λ1λ2)+(µ1+µ2)h]

× eµ2|ẑa(0,t)|e−µ1|t−ẑa(0,t)|V1(0).
(25)

Based on (16) and (17), (25) can be written as

V (t) ≤ eo1e−o2tV1(0), (26)

where o1 = (µ1 + µ2)T0, and o2 = µ1−µ∗
1−

µ1+µ2

τa
−

TD.
Define c1 = min{λmin(P1), λmin(P2)}, c2 = max{

λmax(P1), λmax(P2)}, c3 = c2+hλmax(R1)+
h2

2 λmax(Z2).
Further, we can get

V (t) ≥ c1 ∥ x(t) ∥2, V (0) ≤ c3 ∥ ϕ(0) ∥2 . (27)

Combining (26) and (27), we can obtain

∥ x(t) ∥≤
√
c3
c1
eo1e−

o2
2 t ∥ϕ(0)∥ , (28)

which implies that the system (8) is exponentially sta-
ble under DoS jamming attacks. This proof is complet-

ed.

In Theorem 1, we assume that the controller gain K
is known. In Theorem 2, the unknown controller gain

K of MASs can be derived on the basis of the foregoing
research.
Theorem 2. For given scalars h > 0, µ1 > 0, µ2 > 0,

λ1 > 0, λ2 > 0, asr, s = 1, 2, 3, r = 1, 2, system (8)
is exponential stable, if there exist matrices R̄f > 0,
Z̄f > 0, f = 1, 2 and Ω̄ > 0, Ūf with appropriate

dimensions and the following conditions hold:

ω̄f < 0, f = 1, 2, (29)

0 <

[
Z̄f ∗
Ūf Z̄f

]
, (30)

[
−λ2(IN ⊗X2) ∗
IN ⊗X2 −IN ⊗X1

]
< 0 (31)

[
−e(µ1+µ2)hλ1(IN ⊗X1) ∗

IN ⊗X1 −IN ⊗X2

]
< 0 (32)

[
−λf R̄f ∗
IN ⊗Xf −2a3(3−f)(IN ⊗X3−f ) + a23(3−f)R̄3−f

]
< 0

(33)

[
−λf Z̄f ∗
IN ⊗Xf −2a1(3−f)(IN ⊗X3−f ) + a21(3−f)Z̄3−f

]
< 0

(34)

where the element of ω̄f is given in Appendix C.

Moreover, the consensus protocol and ETC param-

eters can be calculated as follows:

K = Y X−1
1 , Ω = (IN ⊗X)−1Ω̄(IN ⊗X)−1

Proof For any positive scalars asr, due to (S−a−1
sr T )S

−1

(S − a−1
sr T ) ≥ 0, we can obtain that

−TS−1T ≤ −2asrT + a2srS

Let X1 = P−1
1 , X̄1 = IN ⊗X1, one has

Z−1
1 ≤ a211Z̄1 − 2a11X̄1,

− X̄1IX̄1 ≤ a221I − 2a21X̄1, (35)

R−1
1 ≤ a231R̄1 − 2a31X̄1.

When f = 1, define △1 = diag
{
I5 ⊗ X̄1, I, X̄1

}
,

△2 = diag
{
I2 ⊗ X̄1

}
, then pre-multiply and post-multiply

both side of ω1 < 0 by △1 and both side of (12) by △2.

Define new variables Z̄1 = X̄1Z1X̄1, R̄1 = X̄1R1X̄1,
Ū1 = X̄1U1X̄1, Y = KX1. According to schur comple-
ment lemma, ω̄1 < 0 is equivalent to ω1 < 0 and (30)
is equivalent to (12). Thus, we can derive that (29) and

(30) can guarantee (11) and (12) hold.

Furthermore, let X2 = P−1
2 , X̄2 = IN ⊗X2, one has

Z−1
2 ≤ a212Z̄2 − 2a12X̄2,

− X̄2IX̄2 ≤ a222I − 2a22X̄2, (36)

−R−1
2 ≤ a232R̄2 − 2a32X̄2.

When f = 2, denote △3 = diag
{
I4 ⊗ X̄2, I, X̄2

}
,

△4 = diag
{
I2 ⊗ X̄2

}
, then pre-multiply and post-multiply

both side of ω2 < 0 by △3 and both side of (12) by △4.
Define new variables Z̄2 = X̄2Z2X̄2, R̄2 = X̄2R2X̄2,
Ū2 = X̄2U2X̄2. Similarly, employing the schur comple-

ment lemma, ω̄2 < 0 is equivalent to ω2 < 0 and (30)
is equivalent to (12). Thus, we can derive that (29) and
(30) can guarantee (11) and (12) hold. In addition, pre-

multiply and post-multiply the first inequality in (13)
and the second inequality in (13) by X̄2 and X̄1, respec-
tively, and applying the Schur complement lemma, (31)

is equivalent to the first inequality in (13) and (32) is
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equivalent to the second inequality in (13), respective-

ly. By using similar derivations, we can derive that the
LMIs (33) and (34) ensure the (14) and (15) hold, re-
spectively. According to the results of Theorem 1 and

the above analysis, the system (8) can achieve exponen-
tial stable. Due to Y = KX1, the consensus controller
gain can be computed as K = Y X−1

1 .

This completes the proof.

4 Numerical example

In this section, we will provide a numerical simula-

tion to illustrate the feasibility of the obtained results.
Similar to [38], consider a nonlinear MAS described by

(8) with A =

[
−1.175 0.9871

−0.8458 −0.8776

]
, B =

[
−0.194

−10.29

]
,

C =

[
0.1 0.2
0 0.1

]
and

f(xi(t)) =

[
tanh(0.4xi1(t))
sin(0.3xi2(t))

]
.

According to the topology graph shown in Fig. 3,
the L can be obtained as follows:

L =



1 0 0 −1 0 0

−1 2 0 0 −1 0
−1 0 2 0 −1 0
0 −1 0 1 0 0

0 0 0 −1 2 −1
0 0 −1 0 0 1



1 2

4 5 6

3

Fig. 3: Topology graph.

The other designed parameters are set as µ1 = 0.4689,
µ2 = 1.5311, σ = 0.1, α = 1.5, λ1 = 1.05, λ2 = 1.05,
h = 0.01, a11 = 1, a12 = 1, a21 = 1, a31 = 1, a32 =

1. By solving the LMIs in MATLAB, the distributed
event-triggering matrices are obtained as Ω1 = Ω2 =

Ω3 = Ω4 = Ω5 = Ω6 =

[
0.0432 −0.0016
−0.0016 0.0439

]
. Then,

by applying Theorem 2, we can get the controller gain

K =

[
0.0007
0.0093

]T
.

The initial conditions of the agents are described as

follows x1(0) =
[
0.1 1

]T
, x2(0) =

[
0.7 0.3

]T
, x3(0) =[

0.4 −0.2
]T

x4(0) =
[
−0.6 0.8

]T
, x5(0) =

[
0.5 −0.1

]T
,

x6(0) =
[
0.9 −1

]T
.
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Fig. 4: Control input under DoS jamming attacks.

In this example, suppose that the DoS jamming
attacks occur in [0, 2), [10, 11), [29, 31), [37, 39) and

[43, 47), respectively. According to Theorem 1, when
choose µ∗

1 = 0.0311 and TD = 0.1, the attack frequen-
cy and attack duration of DoS jamming attacks can be

obtained as

Ff (0, t) ≤
0.0311 + 0.1

0.7419 + 2 ∗ 0.01
= 0.172,

τa ≥ 0.4689 + 1.5311

0.4689− 0.0311− 0.1
= 5.921.

Fig. 4 denotes the control input under DoS jam-

ming attacks. It can be seen that the control inputs are
piecewise continuous during sleeping intervals of DoS
jamming attacks, while the control inputs become ze-

ro during the active intervals of DoS jamming attacks.
Besides, the triggering instants under DoS jamming at-
tacks are depicted in Fig. 5. Based on the proposed

ETC protocol, the states responses of all agents under
DoS jamming attacks are described in Fig. 6, which
shows that MASs can achieve consensus under the DoS

jamming attacks.

5 Conclusion

In this paper, the event-triggered consensus prob-
lem of MASs under DoS jamming attacks has been in-
vestigated. The communication topologies may change

due to DoS jamming attacks. To mitigate the cost of
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Fig. 5: Triggering instants under DoS jamming attacks.
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Fig. 6: State responses of agent xi(t).

communication networks, a novel ETC protocol is pro-
posed to guarantee that consensus performance of the
MASs can be realized under the DoS jamming attacks.

The attack frequency and attack duration of DoS jam-
ming signals are discussed. Then, by using piecewise
Lyapunov functional, sufficient conditions are derived

to guarantee that consensus problem of MASs can be
solved. In addition, controller gains have been obtained
in terms of linear matrix inequalities. Finally, a numer-

ical example is given to verify the effectiveness of the
proposed method. Future work will be directed to het-
erogeneous MASs with multiple cyber-attacks by ETC

scheme.

Appendix A

Elements of ωf in Lemma 2.

ω1 =

 Π1 ∗ ∗
hM1 −Z−1

1 ∗
M3 0 −I

 (37)

ω2 =

 Π2 ∗ ∗
hM2 −Z−1

2 ∗
M4 0 −I

 (38)

Π1 =


Γ 1
11 ∗ ∗ ∗ ∗
Γ 1
21 Γ

1
22 ∗ ∗ ∗

Γ 1
31 Γ

1
32 Γ

1
33 ∗ ∗

Γ 1
41 0 0 −I ∗
Γ 1
51 0 0 0 −Ω



Π2 =


Γ 2
11 ∗ ∗ ∗
Γ 2
21 Γ

2
22 ∗ ∗

Γ 2
31 Γ

2
32 Γ

2
33 ∗

Γ 2
41 0 0 −I


Γ 1
11 = µ1(IN ⊗ P1) +R1 + (IN ⊗ P1A) + (IN ⊗ATP1)

− e−µ1hZ1

Γ 1
21 = −

(
α(Lσ(t) ⊗ P1BK)T + e−µ1h(Z1 − UT

1 )
)

Γ 1
22 = σΩ + e−µ1h(−2Z1 + U1 + UT

1 )

Γ 1
31 = e−µ1hUT

1

Γ 1
32 = e−µ1h(Z1 − UT

1 )

Γ 1
33 = −e−µ1h(R1 + Z1)

Γ 1
41 = (IN ⊗ P1C)

T

Γ 1
51 = −

(
α(Lσ(t) ⊗ P1BK)

)T

M1 = [IN ⊗A, −α(Lσ(t) ⊗BK), 0, IN ⊗ C,

− α(Lσ(t) ⊗BK)]

M3 = [IN ⊗H, 0, 0, 0, 0]

Γ 2
11 = −µ2(IN ⊗ P2) +R2 + (IN ⊗ P2A) + (IN ⊗ATP2)

− eµ2hZ2

Γ 2
21 = eµ2h(Z2 − UT

2 )

Γ 2
22 = eµ2h(−2Z2 + U2 + UT

2 )

Γ 2
31 = eµ2h(UT

2 )

Γ 2
32 = eµ2h(Z2 − UT

2 )

Γ 2
33 = −eµ2h(R2 + Z2)

Γ 2
41 = (IN ⊗ P2C)

T

M2 = [IN ⊗A, 0, 0, IN ⊗ C]

M4 = [IN ⊗H, 0, 0, 0]
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Appendix B

The proof of Lemma 2.
The following cases with f = 1 and f = 2 will be

given, respectively.
When f = 1, for t ∈ [ΞL,k

∩
Θk,n

∩
L2,n), taking

the derivative of V1(t), one has

V̇11(t) = 2xT (t)(IN ⊗ P1)ẋ(t), (39)

V̇12(t) =− µ1

∫ t

t−h

e−µ1(t−θ)xT (θ)R1x(θ)dθ (40)

+ xT (t)R1x(t)− e−µ1hxT (t− h)R1x(t− h),

V̇13(t) =− µ1h

∫ t

t−h

∫ t

θ

ẋT (φ)Z1e
−µ1(t−φ)ẋ(φ)dφdθ

− h

∫ t

t−h

ẋT (θ)Z1e
−µ1(t−θ)ẋ(θ)dθ (41)

+ h2ẋT (t)Z1ẋ(t).

Then, according to (39)-(41), we can get

V̇1(t) ≤− µ1V1(t) + µ1x
T (t)(IN ⊗ P1)x(t)

+ xT (t)R1x(t)− xT (t− h)R1e
−µ1hx(t− h)

+ h2ẋT (t)Z1ẋ(t)− h

∫ t

t−h

ẋT (θ)Z1e
−µ1hẋ(θ)dθ

+ 2xT (t)(IN ⊗ P1)ẋ(t). (42)

By using Lemma 1, for Z1 and U1 satisfying (12),
we can obtain that

−h
∫ t

t−h

ẋT (θ)Z1ẋ(θ)dθ ≤ ζT1 (t)Υ1ζ1(t), (43)

where ζ1(t) =
[
xT (t) xT (t− τL,k(t)) x

T (t− h)
]T

and

Υ1 =

 −Z1 ∗ ∗
Z1 − UT

1 −2Z1 + U1 + UT
1 ∗

UT
1 Z1 − UT

1 −Z1

.
From Assumption 1, one can get

xT (t)(IN ⊗H)T (IN ⊗H)x(t)− FT (x(t))F (x(t)) ≥ 0.
(44)

Moreover, according to the triggering algorithm (4),

one has

σxT (t− τL,k(t))Ωx(t− τL,k(t))− ψT
k,n(t)Ωψk,n(t) ≥ 0,

(45)

where Ω = diag{Ω1, Ω2, . . . , ΩN}.
Combining (42)-(45), we obtain

V̇1(t)

≤− µ1V1(t) + ξT1 (t)[Π1 + h2MT
1 Z1M1 +MT

3 IM3]ξ1(t),

(46)

where ξ1(t) = [xT (t), xT (t−τL,k(t)), x
T (t−h), FT (x(t)),

ψT
k,n(t)]

T
.

Due to ω1 < 0, which implies, for all t ∈ [ln−1 +
△n−1, ln)

V1(t) ≤ e−µ1(t−(ln−1+△n−1))V1(ln−1 +△n−1). (47)

When f = 2, t ∈ L1,n. Similarly, we can get

V̇2(t) ≤µ2V2(t)− µ2x
T (t)(IN ⊗ P2)x(t)

+ 2xT (t)(IN ⊗ P2)ẋ(t)

+ xT (t)R2x(t)− xT (t− h)R2e
µ2hx(t− h)

+ h2ẋT (t)Z2ẋ(t)− h

∫ t

t−h

ẋT (θ)Z2e
µ2hẋ(θ)dθ.

(48)

Similarly, it can be achieved that

−h
∫ t

t−h

ẋT (θ)Z2ẋ(θ)dθ ≤ ζT1 (t)Υ2ζ1(t), (49)

where Υ2 =

 −Z2 ∗ ∗
Z2 − UT

2 −2Z2 + U2 + UT
2 ∗

UT
2 Z2 − UT

2 −Z2

.
Combining (44), (48) and (49), we obtain

V̇2(t) ≤µ2V2(t) (50)

+ ξT2 (t)[Π2 + h2MT
2 Z2M2 +MT

4 IM4]ξ2(t),

where ξ2(t) = [xT (t), xT (t− τL,k(t)), x
T (t− h), FT (x(t))]

T
.

According to (38), and by applying Schur comple-

ment, one has

V2(t) ≤ eµ2(t−ln)V2(ln), t ∈ [ln, ln +△n). (51)

This proof is completed.

Appendix C

Element of ω̄f in Theorem 2.

ω̄1 =

 Π̄1 ∗ ∗
hM̄1 a

2
11Z̄1 − 2a11X̄1 ∗

M̄3 0 a221I − 2a21X̄1

 (52)

ω̄2 =

 Π̄2 ∗ ∗
hM̄2 a

2
12Z̄2 − 2a12X̄2 ∗

M̄4 0 a222I − 2a22X̄2

 (53)

Π̄1 =


Γ̄ 1
11 ∗ ∗ ∗ ∗
Γ̄ 1
21 Γ̄

1
22 ∗ ∗ ∗

Γ̄ 1
31 Γ̄

1
32 Γ̄

1
33 ∗ ∗

Γ̄ 1
41 0 0 a221I − 2a21X̄1 ∗
Γ̄ 1
51 0 0 0 −Ω̄


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Π̄2 =


Γ̄ 2
11 ∗ ∗ ∗
Γ̄ 2
21 Γ̄

2
22 ∗ ∗

Γ̄ 2
31 Γ̄

2
32 Γ̄

2
33 ∗

Γ̄ 2
41 0 0 a222I − 2a22X̄2



Γ̄ 1
11 = µ1(IN ⊗X1) + R̄1 + (IN ⊗AX1) + (IN ⊗X1A

T )

− e−µ1hZ̄1

Γ̄ 1
21 = −

(
α(Lσ(t) ⊗BY )T + e−µ1h(Z̄1 − ŪT

1 )
)

Γ̄ 1
22 = σΩ̄ + e−µ1h(−2Z̄1 + Ū1 + ŪT

1 )

Γ̄ 1
31 = e−µ1hŪT

1

Γ̄ 1
32 = e−µ1h(Z̄1 − ŪT

1 )

Γ̄ 1
33 = −e−µ1h(R̄1 + Z̄1)

Γ̄ 1
41 = (IN ⊗ CX1)

T

Γ̄ 1
51 = −

(
α(Lσ(t) ⊗BY )

)T

M̄1 = [IN ⊗AX1, −α(Lσ(t) ⊗BY ), 0, IN ⊗ CX1,

− α(Lσ(t) ⊗BY )]

M̄3 = [IN ⊗HX1, 0, 0, 0, 0]

Γ̄ 2
11 = −µ2(IN ⊗X2) + R̄2 + (IN ⊗AX2)

+ (IN ⊗X2A
T )− eµ2hZ̄2

Γ̄ 2
21 = eµ2h(Z̄2 − ŪT

2 )

Γ̄ 2
22 = eµ2h(−2Z̄2 + Ū2 + ŪT

2 )

Γ̄ 2
31 = eµ2hŪT

2

Γ̄ 2
32 = eµ2h(Z̄2 − ŪT

2 )

Γ̄ 2
33 = −eµ2h(R̄2 + Z̄2)

Γ̄ 2
41 = (IN ⊗ CX2)

T

M̄2 = [IN ⊗AX2, 0, 0, IN ⊗ CX2]

M̄4 = [IN ⊗HX2, 0, 0, 0]
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