1. MacIntyre, C. R. & Ananda-Rajah, M. R. Scientific evidence supports aerosol transmission of SARS-COV-2. Antimicrobial Resistance and Infection Control vol. 9 202 (2020).
2. Greenhalgh, T. et al. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet (London, England) 0, (2021).
3. Tang, J. W., Marr, L. C., Li, Y. & Dancer, S. J. Covid-19 has redefined airborne transmission. BMJ 373, n913 (2021).
4. Wang, C. C. et al. Airborne transmission of respiratory viruses. Science (80-. ). 373, (2021).
5. Lewis, D. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning? Nature vol. 590 26–28 (2021).
6. Coleman, K. K. et al. Viral Load of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Respiratory Aerosols Emitted by Patients With Coronavirus Disease 2019 (COVID-19) While Breathing, Talking, and Singing. Clin. Infect. Dis. (2021) doi:10.1093/CID/CIAB691.
7. Fears, A. C. et al. Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 in Aerosol Suspensions. Emerg. Infect. Dis. 26, (2020).
8. van Doremalen, N. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. (2020) doi:10.1056/nejmc2004973.
9. Lednicky, J. A. et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 100, 476–482 (2020).
10. Lednicky, J. A. et al. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. medRxiv 2021.01.12.21249603 (2021) doi:10.1101/2021.01.12.21249603.
11. Adenaiye, O. O. et al. Infectious SARS-CoV-2 in Exhaled Aerosols and Efficacy of Masks During Early Mild Infection. Clin. Infect. Dis. (2021) doi:10.1093/CID/CIAB797.
12. Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020).
13. Santarpia, J. L. et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 10, 12732 (2020).
14. Chia, P. Y. et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 11, 1–7 (2020).
15. Nissen, K. et al. Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards. Sci. Rep. 10, 1–9 (2020).
16. Aboubakr, H. A., Sharafeldin, T. A. & Goyal, S. M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transboundary and Emerging Diseases vol. 68 (2020).
17. Biryukov, J. et al. Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces. mSphere 5, (2020).
18. Chin, A. W. H. et al. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe 1, e10 (2020).
19. Virtanen, J., Aaltonen, K., Kivistö, I. & Sironen, T. Survival of SARS-CoV-2 on Clothing Materials. Adv. Virol. 2021, (2021).
20. Firquet, S. et al. Survival of Enveloped and Non-Enveloped Viruses on Inanimate Surfaces. Microbes Environ. 30, 140 (2015).
21. Guo, Z. D. et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg. Infect. Dis. 26, 1586–1591 (2020).
22. Ayoub, H. H. et al. Age could be driving variable SARS-CoV-2 epidemic trajectories worldwide. PLoS One 15, e0237959 (2020).
23. Goldstein, E., Lipsitch, M. & Cevik, M. On the Effect of Age on the Transmission of SARS-CoV-2 in Households, Schools, and the Community. J. Infect. Dis. 223, 362–369 (2021).
24. Kim, Y.-I. et al. Critical role of neutralizing antibody for SARS-CoV-2 reinfection and transmission. https://doi.org/10.1080/22221751.2021.1872352 10, 152–160 (2021).
25. Klompas, M., Baker, M. & Rhee, C. What Is an Aerosol-Generating Procedure? JAMA Surgery vol. 156 113–114 (2021).
26. Public Health Guidance for Community-Related Exposure | CDC. https://www.cdc.gov/coronavirus/2019-ncov/php/public-health-recommendations.html.
27. Lu, J. et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. (2021) doi:10.21203/RS.3.RS-738164/V1.
28. Bazant, M. Z. & Bush, J. W. M. A guideline to limit indoor airborne transmission of COVID-19. Proc. Natl. Acad. Sci. 118, (2021).
29. Katelaris, A. L. et al. Epidemiologic Evidence for Airborne Transmission of SARS-CoV-2 during Church Singing, Australia, 2020 - Volume 27, Number 6—June 2021 - Emerging Infectious Diseases journal - CDC. Emerg. Infect. Dis. 27, 1677–1680 (2021).
30. Cai, J. et al. Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020. Emerg. Infect. Dis. 26, 1343–1345 (2020).
31. Brlek, A., Vidovič, Š., Vuzem, S., Turk, K. & Simonović, Z. Possible indirect transmission of COVID-19 at a squash court, Slovenia, March 2020: case report. Epidemiol. Infect. 148, (2020).
32. Marc, A. et al. Quantifying the relationship between SARS-CoV-2 viral load and infectiousness. Elife 10, (2021).
33. Jones, D. et al. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Sci. Total Environ. 749, (2020).
34. Schreck, J. H., Lashaki, M. J., Hashemi, J., Dhanak, M. & Verma, S. Aerosol generation in public restrooms. Phys. Fluids 33, 033320 (2021).
35. Makison Booth, C. & Frost, G. Potential distribution of viable norovirus after simulated vomiting. J. Hosp. Infect. 102, 304–310 (2019).
36. Port, J. R. et al. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nat. Commun. 2021 121 12, 1–15 (2021).
37. Science Brief: SARS-CoV-2 and Surface (Fomite) Transmission for Indoor Community Environments | CDC. https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/surface-transmission.html.
38. Buchan, S. A. et al. Increased Household Secondary Attacks Rates With Variant of Concern Severe Acute Respiratory Syndrome Coronavirus 2 Index Cases. Clin. Infect. Dis. (2021) doi:10.1093/CID/CIAB496.
39. Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. The Lancet Microbe 2, e13–e22 (2021).
40. van Kampen, J. J. A. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 2021 121 12, 1–6 (2021).
41. Li, Y. et al. Clinical characteristics, cause analysis and infectivity of COVID-19 nucleic acid repositive patients: A literature review. J. Med. Virol. 93, 1288–1295 (2021).
42. Jaafar, R. et al. Correlation Between 3790 Quantitative Polymerase Chain Reaction–Positives Samples and Positive Cell Cultures, Including 1941 Severe Acute Respiratory Syndrome Coronavirus 2 Isolates. Clin. Infect. Dis. 72, e921–e921 (2021).
43. Lei, H. et al. SARS-CoV-2 environmental contamination associated with persistently infected COVID-19 patients. Influenza Other Respi. Viruses 14, 688–699 (2020).
44. Hetemäki, I. et al. An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) in a secondary care hospital in Finland, May 2021. Eurosurveillance 26, 2100636 (2021).
45. Edwards, D. A. et al. Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proc. Natl. Acad. Sci. 118, (2021).
46. Xu, F., Laguna, L. & Sarkar, A. Aging-related changes in quantity and quality of saliva: Where do we stand in our understanding? J. Texture Stud. 50, 27–35 (2019).
47. Baker, S. A., Kwok, S., Berry, G. J. & Montine, T. J. Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation. PLoS One 16, e0247060 (2021).
48. Sivaraman, K., Chopra, A., Narayana, A. & Radhakrishnan, R. A. A five-step risk management process for geriatric dental practice during SARS-CoV-2 pandemic. Gerodontology 38, 17–26 (2021).
49. Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Invest. 123, 958 (2013).
50. Pourbagheri-Sigaroodi, A., Bashash, D., Fateh, F. & Abolghasemi, H. Laboratory findings in COVID-19 diagnosis and prognosis. Clin. Chim. Acta. 510, 475 (2020).
51. Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, 2223 (2021).
52. Vuorinen, V. et al. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci. 130, 104866 (2020).
53. Verreault, D., Moineau, S. & Duchaine, C. Methods for Sampling of Airborne Viruses. Microbiol. Mol. Biol. Rev. 72, 413 (2008).
54. Fabian, P., McDevitt, J. J., Houseman, E. A. & Milton, D. K. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler. Indoor Air 19, 433 (2009).
55. Tseng, C. C. & Li, C. S. Collection efficiencies of aerosol samplers for virus-containing aerosols. J. Aerosol Sci. 36, 593–607 (2005).
56. Turgeon, N., Toulouse, M.-J., Martel, B., Moineau, S. & Duchaine, C. Comparison of Five Bacteriophages as Models for Viral Aerosol Studies. Appl. Environ. Microbiol. 80, 4242 (2014).
57. Fedorenko, A., Grinberg, M., Orevi, T. & Kashtan, N. Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces. Sci. Reports 2020 101 10, 1–10 (2020).
58. Rusanen, J. et al. A generic, scalable, and rapid time-resolved förster resonance energy transfer-based assay for antigen detection—sars-cov-2 as a proof of concept. MBio 12, (2021).
59. Virtanen, J. et al. Kinetics of Neutralizing Antibodies of COVID-19 Patients Tested Using Clinical D614G, B.1.1.7, and B 1.351 Isolates in Microneutralization Assays. Viruses 13, (2021).
60. Aizenberg, V., Grinshpun, S., Willeke, K., Smith, J. & Baron, P. Performance characteristics of the button personal inhalable aerosol sampler. AIHAJ 61, 398–404 (2000).
61. Riesenfeld, E. et al. Ultrafine Particle Concentrations in a Hospital. http://dx.doi.org/10.1080/08958378.2000.11463201 12, 83–94 (2015).
62. Dekati. Dekati® PM10 Impactor | DEKATI. 358, 1–4 (2010).
63. Mannonen, L. et al. Comparison of Two Commercial Platforms and a Laboratory-Developed Test for Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) RNA. J. Mol. Diagnostics 23, 407–416 (2021).
64. Kortela, E. et al. Real-life clinical sensitivity of SARS-CoV-2 RT-PCR test in symptomatic patients. PLoS One 16, e0251661 (2021).
65. Jääskeläinen, A. J. et al. Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation. J. Clin. Virol. 129, 104512 (2020).
66. Haveri, A. et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Eurosurveillance 25, 2000266 (2020).
67. Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25, (2020).
68. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel For Emergency Use Only Instructions for Use.
69. Pintó, R., Costafreda, M. & Bosch, A. Risk assessment in shellfish-borne outbreaks of hepatitis A. Appl. Environ. Microbiol.75, 7350–7355 (2009).