1. Countdown, N., 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet, 2018. 392(10152): p. 1072-88.
2. Shaw, J.E., R.A. Sicree, and P.Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice, 2010. 87(1): p. 4-14.
3. Bennett, J.E., et al., NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. The Lancet, 2018. 392(10152): p. 1072-1088.
4. Roth, G.A., et al., Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology, 2017. 70(1): p. 1-25.
5. Manemann, S.M., et al., Recent trends in cardiovascular disease deaths: a state specific perspective. BMC Public Health, 2021. 21(1): p. 1-7.
6. Hajar, R., Framingham contribution to cardiovascular disease. Heart views: the official journal of the Gulf Heart Association, 2016. 17(2): p. 78.
7. Al-Mawali, A., Non-communicable diseases: shining a light on cardiovascular disease, Oman’s biggest killer. Oman medical journal, 2015. 30(4): p. 227.
8. Olaniyi, E.O., et al. Neural network diagnosis of heart disease. in 2015 International Conference on Advances in Biomedical Engineering (ICABME). 2015. IEEE.
9. Pyakurel, P., et al., Cardiovascular risk factors among industrial workers: a cross–sectional study from eastern Nepal. Journal of Occupational Medicine and Toxicology, 2016. 11(1): p. 1-7.
10. Yang, W., et al., Comparison between metabolic syndrome and the framingham risk score as predictors of cardiovascular diseases among Kazakhs in Xinjiang. Scientific reports, 2018. 8(1): p. 1-8.
11. Malahfji, M. and J.J. Mahmarian, Imaging to stratify coronary artery disease risk in asymptomatic patients with diabetes. Methodist DeBakey cardiovascular journal, 2018. 14(4): p. 266.
12. Xu, G., et al., Risk of all-cause and CHD mortality in women versus men with type 2 diabetes: a systematic review and meta-analysis. European journal of endocrinology, 2019. 180(4): p. 243-255.
13. Hadaegh, F., et al., New and known type 2 diabetes as coronary heart disease equivalent: results from 7.6 year follow up in a Middle East population. Cardiovascular diabetology, 2010. 9(1): p. 1-8.
14. Lloyd-Jones, D.M., et al., Framingham risk score and prediction of lifetime risk for coronary heart disease. The American journal of cardiology, 2004. 94(1): p. 20-24.
15. Hense, H.-W., et al., Evaluation of a recalibrated systematic coronary risk evaluation cardiovascular risk chart: results from systematic coronary risk evaluation Germany. European Journal of Preventive Cardiology, 2008. 15(4): p. 409-415.
16. Coleman, R.L., et al., Framingham, SCORE, and DECODE risk equations do not provide reliable cardiovascular risk estimates in type 2 diabetes. Diabetes care, 2007. 30(5): p. 1292-1293.
17. Stevens, R.J., et al., The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clinical science, 2001. 101(6): p. 671-679.
18. Bannister, C.A., et al., External validation of the UKPDS risk engine in incident type 2 diabetes: a need for new type 2 diabetes–specific risk equations. Diabetes care, 2014. 37(2): p. 537-545.
19. Laxy, M., et al., Performance of the UKPDS outcomes model 2 for predicting death and cardiovascular events in patients with type 2 diabetes mellitus from a German population-based cohort. Pharmacoeconomics, 2019. 37(12): p. 1485-1494.
20. McEwan, P., et al., Validation of the UKPDS 82 risk equations within the Cardiff Diabetes Model. Cost effectiveness and resource allocation, 2015. 13(1): p. 1-7.
21. Ezenwaka, C., et al., Prediction of 10-year coronary heart disease risk in Caribbean type 2 diabetic patients using the UKPDS risk engine. International journal of cardiology, 2009. 132(3): p. 348-353.
22. Clarke, P., et al., A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia, 2004. 47(10): p. 1747-1759.
23. Van Dieren, S., et al., External validation of the UK Prospective Diabetes Study (UKPDS) risk engine in patients with type 2 diabetes. Diabetologia, 2011. 54(2): p. 264-270.
24. Marshall SM, B.J., Standardization of HbA1c measurements: a consensus statement. Annals of clinical biochemistry, 2000. 1(1): p. 45-6.
25. Koo, B.K., et al., Prediction of coronary heart disease risk in Korean patients with diabetes mellitus. Journal of Lipid and Atherosclerosis, 2018. 7(2): p. 110-121.
26. Yew, S.Q., Y.C. Chia, and M. Theodorakis, Assessing 10-Year Cardiovascular Disease Risk in Malaysians With Type 2 Diabetes Mellitus: Framingham Cardiovascular Versus United Kingdom Prospective Diabetes Study Equations. Asia Pacific Journal of Public Health, 2019. 31(7): p. 622-632.
27. Yang, X., et al., Development and validation of a total coronary heart disease risk score in type 2 diabetes mellitus. The American journal of cardiology, 2008. 101(5): p. 596-601.
28. Simmons, R.K., et al., Performance of the UK prospective diabetes study risk engine and the Framingham risk equations in estimating cardiovascular disease in the EPIC-Norfolk cohort. Diabetes care, 2009. 32(4): p. 708-713.
29. Piniés, J.A., et al., Development of a prediction model for fatal and non-fatal coronary heart disease and cardiovascular disease in patients with newly diagnosed type 2 diabetes mellitus: the Basque Country Prospective Complications and Mortality Study risk engine (BASCORE). Diabetologia, 2014. 57(11): p. 2324-2333.