[1] K.L. Zhou, Y.F. Zhou, K. Wu, N.F. Tian, Y.S. Wu, Y.L. Wang, D.H. Chen, B. Zhou, X.Y. Wang, H.Z. Xu, X.L. Zhang, Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury, Sci Rep 5 (2015) 17130.
[2] S. Liu, C. Sarkar, M. Dinizo, A.I. Faden, E.Y. Koh, M.M. Lipinski, J. Wu, Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death, Cell Death Dis 6(1) (2015) e1582.
[3] M.B. Bracken, M.J. Shepard, W.F. Collins, T.R. Holford, W. Young, D.S. Baskin, H.M. Eisenberg, E. Flamm, L. Leo-Summers, J. Maroon, et al., A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study, N Engl J Med 322(20) (1990) 1405-11.
[4] D. Xu, L. Yang, Y. Li, Y. Sun, Clinical study of ganglioside (GM) combined with methylprednisolone (MP) for early acute spinal injury, Pakistan journal of pharmaceutical sciences 28(2 Suppl) (2015) 701-4.
[5] M.G. Fehlings, D.H. Nguyen, Immunoglobulin G: a potential treatment to attenuate neuroinflammation following spinal cord injury, Journal of clinical immunology 30 Suppl 1(Suppl 1) (2010) S109-12.
[6] H.Y. Zhang, X. Zhang, Z.G. Wang, H.X. Shi, F.Z. Wu, B.B. Lin, X.L. Xu, X.J. Wang, X.B. Fu, Z.Y. Li, C.J. Shen, X.K. Li, J. Xiao, Exogenous basic fibroblast growth factor inhibits ER stress-induced apoptosis and improves recovery from spinal cord injury, CNS neuroscience & therapeutics 19(1) (2013) 20-9.
[7] C. Penas, M.S. Guzmán, E. Verdú, J. Forés, X. Navarro, C. Casas, Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response, Journal of neurochemistry 102(4) (2007) 1242-55.
[8] K.V. Ambrozaitis, E. Kontautas, B. Spakauskas, D. Vaitkaitis, [Pathophysiology of acute spinal cord injury], Medicina (Kaunas, Lithuania) 42(3) (2006) 255-61.
[9] X.B. Chen, Z.L. Wang, Q.Y. Yang, F.Y. Zhao, X.L. Qin, X.E. Tang, J.L. Du, Z.H. Chen, K. Zhang, F.J. Huang, Diosgenin Glucoside Protects against Spinal Cord Injury by Regulating Autophagy and Alleviating Apoptosis, Int J Mol Sci 19(8) (2018).
[10] W. Dai, X. Wang, H. Teng, C. Li, B. Wang, J. Wang, Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats, Int Immunopharmacol 66 (2019) 215-223.
[11] M. He, Y. Ding, C. Chu, J. Tang, Q. Xiao, Z.G. Luo, Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury, Proceedings of the National Academy of Sciences of the United States of America 113(40) (2016) 11324-11329.
[12] H.Q. Duan, Q.L. Wu, X. Yao, B.Y. Fan, H.Y. Shi, C.X. Zhao, Y. Zhang, B. Li, C. Sun, X.H. Kong, X.F. Zhou, S.Q. Feng, Nafamostat mesilate attenuates inflammation and apoptosis and promotes locomotor recovery after spinal cord injury, 24(5) (2018) 429-438.
[13] J.P. de Rivero Vaccari, G. Lotocki, A.E. Marcillo, W.D. Dietrich, R.W. Keane, A molecular platform in neurons regulates inflammation after spinal cord injury, The Journal of neuroscience : the official journal of the Society for Neuroscience 28(13) (2008) 3404-14.
[14] J.P. de Rivero Vaccari, W.D. Dietrich, R.W. Keane, Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 34(3) (2014) 369-75.
[15] G. Trendelenburg, Molecular regulation of cell fate in cerebral ischemia: role of the inflammasome and connected pathways, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 34(12) (2014) 1857-67.
[16] Q. Fu, J. Wu, X.Y. Zhou, M.H. Ji, Q.H. Mao, Q. Li, M.M. Zong, Z.Q. Zhou, J.J. Yang, NLRP3/Caspase-1 Pathway-Induced Pyroptosis Mediated Cognitive Deficits in a Mouse Model of Sepsis-Associated Encephalopathy, Inflammation 42(1) (2019) 306-318.
[17] F. Marín-Aguilar, J. Ruiz-Cabello, M.D. Cordero, Aging and the Inflammasomes, Experientia supplementum (2012) 108 (2018) 303-320.
[18] W.P. Lin, G.P. Xiong, Q. Lin, X.W. Chen, L.Q. Zhang, J.X. Shi, Q.F. Ke, J.H. Lin, Heme oxygenase-1 promotes neuron survival through down-regulation of neuronal NLRP1 expression after spinal cord injury, J Neuroinflammation 13(1) (2016) 52.
[19] Z. Qiu, Y. He, H. Ming, S. Lei, Y. Leng, Z. Xia, Lipopolysaccharide (LPS) Aggravates High Glucose- and Hypoxia/Reoxygenation-Induced Injury through Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis in H9C2 Cardiomyocytes, Journal of diabetes research 2019 (2019) 8151836.
[20] P.G. Sullivan, S. Krishnamurthy, S.P. Patel, J.D. Pandya, A.G. Rabchevsky, Temporal characterization of mitochondrial bioenergetics after spinal cord injury, Journal of neurotrauma 24(6) (2007) 991-9.
[21] D. Gozuacik, A. Kimchi, Autophagy as a cell death and tumor suppressor mechanism, Oncogene 23(16) (2004) 2891-906.
[22] D. Glick, S. Barth, K.F. Macleod, Autophagy: cellular and molecular mechanisms, The Journal of pathology 221(1) (2010) 3-12.
[23] X. Zhang, H. Yan, Y. Yuan, J. Gao, Z. Shen, Y. Cheng, Y. Shen, R.R. Wang, X. Wang, W.W. Hu, G. Wang, Z. Chen, Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance, Autophagy 9(9) (2013) 1321-33.
[24] C. Wu, H. Xu, J. Li, X. Hu, X. Wang, Y. Huang, Y. Li, S. Sheng, Y. Wang, H. Xu, W. Ni, K. Zhou, Baicalein Attenuates Pyroptosis and Endoplasmic Reticulum Stress Following Spinal Cord Ischemia-Reperfusion Injury via Autophagy Enhancement, Front Pharmacol 11 (2020) 1076.
[25] J. Hu, H. Han, P. Cao, W. Yu, C. Yang, Y. Gao, W. Yuan, Resveratrol improves neuron protection and functional recovery through enhancement of autophagy after spinal cord injury in mice, Am J Transl Res 9(10) (2017) 4607-4616.
[26] I. Kim, S. Rodriguez-Enriquez, J.J. Lemasters, Selective degradation of mitochondria by mitophagy, Archives of biochemistry and biophysics 462(2) (2007) 245-53.
[27] B.G. Byrne, J.F. Dubuisson, A.D. Joshi, J.J. Persson, M.S. Swanson, Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection, mBio 4(1) (2013) e00620-12.
[28] W. Liu, S. Li, Z. Qu, Y. Luo, R. Chen, S. Wei, X. Yang, Q. Wang, Betulinic acid induces autophagy-mediated apoptosis through suppression of the PI3K/AKT/mTOR signaling pathway and inhibits hepatocellular carcinoma, Am J Transl Res 11(11) (2019) 6952-6964.
[29] P. Yogeeswari, D. Sriram, Betulinic acid and its derivatives: a review on their biological properties, Current medicinal chemistry 12(6) (2005) 657-66.
[30] M.S. Planchard, M.A. Samel, A. Kumar, V. Rangachari, The natural product betulinic acid rapidly promotes amyloid-β fibril formation at the expense of soluble oligomers, ACS chemical neuroscience 3(11) (2012) 900-8.
[31] S. Giordano, V. Darley-Usmar, J. Zhang, Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease, Redox Biol 2 (2014) 82-90.
[32] J. Li, Q. Wang, H. Cai, Z. He, H. Wang, J. Chen, Z. Zheng, J. Yin, Z. Liao, H. Xu, J. Xiao, F. Gong, FGF1 improves functional recovery through inducing PRDX1 to regulate autophagy and anti-ROS after spinal cord injury, Journal of cellular and molecular medicine 22(5) (2018) 2727-2738.
[33] Y. Chen, J. Meng, Q. Xu, T. Long, F. Bi, C. Chang, W. Liu, Rapamycin improves the neuroprotection effect of inhibition of NLRP3 inflammasome activation after TBI, Brain Res 1710 (2019) 163-172.
[34] K.R. Byrnes, B.A. Stoica, S. Fricke, S. Di Giovanni, A.I. Faden, Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury, Brain 130(Pt 11) (2007) 2977-92.
[35] Z. He, S. Zou, J. Yin, Z. Gao, Y. Liu, Y. Wu, H. He, Y. Zhou, Q. Wang, J. Li, F. Wu, H. Xu, X. Jia, J. Xiao, Inhibition of Endoplasmic Reticulum Stress Preserves the Integrity of Blood-Spinal Cord Barrier in Diabetic Rats Subjected to Spinal Cord Injury, Scientific reports 7(1) (2017) 7661.
[36] J. Lee, H. Choi, H. Ahn, B. Ju, T. Yune, Matrix metalloproteinase-3 promotes early blood-spinal cord barrier disruption and hemorrhage and impairs long-term neurological recovery after spinal cord injury, The American journal of pathology 184(11) (2014) 2985-3000.
[37] K. Wu, K. Zhou, Y. Wang, Y. Zhou, N. Tian, Y. Wu, D. Chen, D. Zhang, X. Wang, H. Xu, X. Zhang, Stabilization of HIF-1α by FG-4592 promotes functional recovery and neural protection in experimental spinal cord injury, Brain Res 1632 (2016) 19-26.
[38] H. Li, C. Wang, T. He, T. Zhao, Y.Y. Chen, Y.L. Shen, X. Zhang, L.L. Wang, Mitochondrial Transfer from Bone Marrow Mesenchymal Stem Cells to Motor Neurons in Spinal Cord Injury Rats via Gap Junction, Theranostics 9(7) (2019) 2017-2035.
[39] A. Saneja, D. Arora, R. Kumar, R.D. Dubey, A.K. Panda, P.N. Gupta, Therapeutic applications of betulinic acid nanoformulations, Annals of the New York Academy of Sciences 1421(1) (2018) 5-18.
[40] S.P. Navabi, A. Sarkaki, E. Mansouri, M. Badavi, A. Ghadiri, Y. Farbood, The effects of betulinic acid on neurobehavioral activity, electrophysiology and histological changes in an animal model of the Alzheimer's disease, Behavioural brain research 337 (2018) 99-106.
[41] S.S. Bellampalli, Y. Ji, A. Moutal, S. Cai, E.M.K. Wijeratne, M.A. Gandini, J. Yu, A. Chefdeville, A. Dorame, L.A. Chew, C.L. Madura, S. Luo, G. Molnar, M. Khanna, J.M. Streicher, G.W. Zamponi, A.A.L. Gunatilaka, R. Khanna, Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury-associated peripheral sensory neuropathy via block of N- and T-type calcium channels, Pain 160(1) (2019) 117-135.
[42] N. Mizushima, B. Levine, A. Cuervo, D. Klionsky, Autophagy fights disease through cellular self-digestion, Nature 451(7182) (2008) 1069-75.
[43] Y. Li, Y. Guo, Y. Fan, H. Tian, K. Li, X. Mei, Melatonin Enhances Autophagy and Reduces Apoptosis to Promote Locomotor Recovery in Spinal Cord Injury via the PI3K/AKT/mTOR Signaling Pathway, Neurochemical research 44(8) (2019) 2007-2019.
[44] Y. Uchiyama, M. Koike, M. Shibata, Autophagic neuron death in neonatal brain ischemia/hypoxia, Autophagy 4(4) (2008) 404-8.
[45] Z. Li, F. Liu, L. Zhang, Y. Cao, Y. Shao, X. Wang, X. Jiang, Z. Chen, Neuroserpin restores autophagy and promotes functional recovery after acute spinal cord injury in rats, Molecular medicine reports 17(2) (2018) 2957-2963.
[46] P. Tang, H. Hou, L. Zhang, X. Lan, Z. Mao, D. Liu, C. He, H. Du, L. Zhang, Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats, Molecular neurobiology 49(1) (2014) 276-87.
[47] J. Li, G. Bao, A.L. E, J. Ding, S. Li, S. Sheng, Z. Shen, Z. Jia, C. Lin, C. Zhang, Z. Lou, H. Xu, W. Gao, K. Zhou, Betulinic Acid Enhances the Viability of Random-Pattern Skin Flaps by Activating Autophagy, Front Pharmacol 10 (2019) 1017.
[48] C. Ma, D. Yang, B. Wang, C. Wu, Y. Wu, S. Li, X. Liu, K. Lassen, L. Dai, S. Yang, Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation, Science advances 6(21) (2020) eaaz6717.
[49] Y. Liang, P. Song, Y. Zhu, J. Xu, P. Zhu, R. Liu, Y. Zhang, TREM-1-targeting LP17 attenuates cerebral ischemia-induced neuronal injury by inhibiting oxidative stress and pyroptosis, Biochemical and biophysical research communications 529(3) (2020) 554-561.
[50] F. He, G. Zheng, J. Hou, Q. Hu, Q. Ling, G. Wu, H. Zhao, J. Yang, Y. Wang, L. Jiang, W. Tang, Z. Yang, N-acetylcysteine alleviates post-resuscitation myocardial dysfunction and improves survival outcomes via partly inhibiting NLRP3 inflammasome induced-pyroptosis, Journal of inflammation (London, England) 17 (2020) 25.
[51] Y. Fang, S. Tian, Y. Pan, W. Li, Q. Wang, Y. Tang, T. Yu, X. Wu, Y. Shi, P. Ma, Y. Shu, Pyroptosis: A new frontier in cancer, Biomed Pharmacother 121 (2020) 109595.
[52] Y. Aachoui, V. Sagulenko, E.A. Miao, K.J. Stacey, Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection, Current opinion in microbiology 16(3) (2013) 319-26.
[53] A. de Gassart, F. Martinon, Pyroptosis: Caspase-11 Unlocks the Gates of Death, Immunity 43(5) (2015) 835-7.
[54] X. Chen, J. Cui, X. Zhai, J. Zhang, Z. Gu, X. Zhi, W. Weng, P. Pan, L. Cao, F. Ji, Z. Wang, J. Su, Inhalation of Hydrogen of Different Concentrations Ameliorates Spinal Cord Injury in Mice by Protecting Spinal Cord Neurons from Apoptosis, Oxidative Injury and Mitochondrial Structure Damages, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 47(1) (2018) 176-190.
[55] Z. Qiu, S. Lei, B. Zhao, Y. Wu, W. Su, M. Liu, Q. Meng, B. Zhou, Y. Leng, Z. Xia, NLRP3 Inflammasome Activation-Mediated Pyroptosis Aggravates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats, Oxidative medicine and cellular longevity 2017 (2017) 9743280.
[56] D. Lin, Y. Huang, C. Ho, P. Hung, M. Hsu, T. Wang, T. Wu, T. Lee, Z. Huang, P. Chang, M. Chiang, Oxidative Insults and Mitochondrial DNA Mutation Promote Enhanced Autophagy and Mitophagy Compromising Cell Viability in Pluripotent Cell Model of Mitochondrial Disease, Cells 8(1) (2019).
[57] Q. Li, S. Gao, Z. Kang, M. Zhang, X. Zhao, Y. Zhai, J. Huang, G.Y. Yang, W. Sun, J. Wang, Rapamycin Enhances Mitophagy and Attenuates Apoptosis After Spinal Ischemia-Reperfusion Injury, Front Neurosci 12 (2018) 865.
[58] Q. Lin, S. Li, N. Jiang, X. Shao, M. Zhang, H. Jin, Z. Zhang, J. Shen, Y. Zhou, W. Zhou, L. Gu, R. Lu, Z. Ni, PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation, Redox Biol 26 (2019) 101254.
[59] C.T. Chu, Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases, Neurobiology of disease 122 (2019) 23-34.
[60] D.L. Medina, S. Di Paola, I. Peluso, A. Armani, D. De Stefani, R. Venditti, S. Montefusco, A. Scotto-Rosato, C. Prezioso, A. Forrester, C. Settembre, W. Wang, Q. Gao, H. Xu, M. Sandri, R. Rizzuto, M.A. De Matteis, A. Ballabio, Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB, Nat Cell Biol 17(3) (2015) 288-99.
[61] C. Settembre, C. Di Malta, V.A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S.U. Erdin, T. Huynh, D. Medina, P. Colella, M. Sardiello, D.C. Rubinsztein, A. Ballabio, TFEB links autophagy to lysosomal biogenesis, Science (New York, N.Y.) 332(6036) (2011) 1429-33.
[62] N. Raben, R. Puertollano, TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress, Annual review of cell and developmental biology 32 (2016) 255-278.
[63] S. Herzig, R.J. Shaw, AMPK: guardian of metabolism and mitochondrial homeostasis, Nature reviews. Molecular cell biology 19(2) (2018) 121-135.
[64] N.P. Young, A. Kamireddy, J.L. Van Nostrand, L.J. Eichner, M.N. Shokhirev, Y. Dayn, R.J. Shaw, AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes, Genes & development 30(5) (2016) 535-52.
[65] K. Zhou, H. Chen, J. Lin, H. Xu, H. Wu, G. Bao, J. Li, X. Deng, X. Shui, W. Gao, J. Ding, J. Xiao, H. Xu, FGF21 augments autophagy in random-pattern skin flaps via AMPK signaling pathways and improves tissue survival, Cell death & disease 10(12) (2019) 872.
[66] H.J. Shin, H. Kim, S. Oh, J.G. Lee, M. Kee, H.J. Ko, M.N. Kweon, K.J. Won, S.H. Baek, AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy, Nature 534(7608) (2016) 553-7.
[67] T. Gong, Y. Yang, T. Jin, W. Jiang, R. Zhou, Orchestration of NLRP3 Inflammasome Activation by Ion Fluxes, Trends in immunology 39(5) (2018) 393-406.
[68] Y. Wang, L. Jia, Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis, 14(1) (2018) e1006872.