1 Steinbach, G. et al. Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscope. Cytometry A73, 202-208, doi:10.1002/cyto.a.20517 (2008).
2 Axelrod, D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J26, 557-573, doi:10.1016/S0006-3495(79)85271-6 (1979).
3 Timr, S. et al. Nonlinear Optical Properties of Fluorescent Dyes Allow for Accurate Determination of Their Molecular Orientations in Phospholipid Membranes. J Phys Chem B119, 9706-9716, doi:10.1021/acs.jpcb.5b05123 (2015).
4 Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat Methods8, 393-399, doi:10.1038/nmeth.1596 (2011).
5 Lazar, J., Bondar, A., Timr, S. & Firestein, S. J. Two-photon polarization microscopy reveals protein structure and function. Nat Methods8, 684-690, doi:10.1038/nmeth.1643 (2011).
6 Kampmann, M., Atkinson, C. E., Mattheyses, A. L. & Simon, S. M. Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy. Nat Struct Mol Biol18, 643-649, doi:10.1038/nsmb.2056 (2011).
7 Valades Cruz, C. A. et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc Natl Acad Sci U S A113, E820-828, doi:10.1073/pnas.1516811113 (2016).
8 Gorjanacz, M. et al. Domains of Importin-alpha2 required for ring canal assembly during Drosophila oogenesis. J Struct Biol154, 27-41, doi:10.1016/j.jsb.2005.12.007 (2006).
9 Zhanghao, K. et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat Commun10, 4694, doi:10.1038/s41467-019-12681-w (2019).
10 Bondar, A. & Lazar, J. Dissociated GalphaGTP and Gbetagamma protein subunits are the major activated form of heterotrimeric Gi/o proteins. J Biol Chem289, 1271-1281, doi:10.1074/jbc.M113.493643 (2014).
11 Bondar, A. & Lazar, J. The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors. J Biol Chem292, 9690-9698, doi:10.1074/jbc.M116.768127 (2017).
12 DeMay, B. S., Noda, N., Gladfelter, A. S. & Oldenbourg, R. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophys J101, 985-994, doi:10.1016/j.bpj.2011.07.008 (2011).
13 Han, Z. et al. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. PLoS One9, e113873, doi:10.1371/journal.pone.0113873 (2014).
14 Benninger, R. K. et al. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses. Biophys J96, L13-15, doi:10.1016/j.bpj.2008.10.005 (2009).
15 Ferrand, P. et al. Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores. Biophys J106, 2330-2339, doi:10.1016/j.bpj.2014.04.011 (2014).
16 Benninger, R. K., Onfelt, B., Neil, M. A., Davis, D. M. & French, P. M. Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys J88, 609-622, doi:10.1529/biophysj.104.050096 (2005).
17 McQuilken, M. et al. Polarized fluorescence microscopy to study cytoskeleton assembly and organization in live cells. Current protocols in cell biology67, 4.29. 21-24.29. 13 (2015).
18 Kress, A. et al. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy. Biophys J105, 127-136, doi:10.1016/j.bpj.2013.05.043 (2013).
19 Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science296, 913-916, doi:10.1126/science.1068539 (2002).
20 Roorda, R. D., Hohl, T. M., Toledo-Crow, R. & Miesenbock, G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J Neurophysiol92, 609-621, doi:10.1152/jn.00087.2004 (2004).
21 Del Piccolo, N. & Hristova, K. Quantifying the Interaction between EGFR Dimers and Grb2 in Live Cells. Biophys J113, 1353-1364, doi:10.1016/j.bpj.2017.06.029 (2017).
22 Timr, S. et al. Accurate determination of the orientational distribution of a fluorescent molecule in a phospholipid membrane. J Phys Chem B118, 855-863, doi:10.1021/jp4067026 (2014).
23 Ansbacher, T. et al. Calculation of transition dipole moment in fluorescent proteins--towards efficient energy transfer. Phys Chem Chem Phys14, 4109-4117, doi:10.1039/c2cp23351g (2012).
24 Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process7, 27-41, doi:10.1109/83.650848 (1998).
25 Royant, A. & Noirclerc-Savoye, M. Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein. J Struct Biol174, 385-390, doi:10.1016/j.jsb.2011.02.004 (2011).
26 Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B111, 7812-7824, doi:10.1021/jp071097f (2007).
27 de Jong, D. H. et al. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J Chem Theory Comput9, 687-697, doi:10.1021/ct300646g (2013).
28 Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX1, 19-25 (2015).
29 Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J Chem Phys126, 014101, doi:10.1063/1.2408420 (2007).
30 Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics52, 7182-7190 (1981).
31 Tironi, I. G., Sperb, R., Smith, P. E. & van Gunsteren, W. F. A generalized reaction field method for molecular dynamics simulations. The Journal of chemical physics102, 5451-5459 (1995).
32 Páll, S. & Hess, B. A flexible algorithm for calculating pair interactions on SIMD architectures. Computer Physics Communications184, 2641-2650 (2013).
33 Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of chemical theory and computation4, 116-122 (2008).
34 Oliphant, T. E. Python for scientific computing. Computing in Science & Engineering9, 10-20 (2007).
35 Virtanen, P. et al. SciPy 1.0--Fundamental Algorithms for Scientific Computing in Python. arXiv preprint arXiv:1907.10121 (2019).