1. Higgins JPT, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. 2011.
2. Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP journal club. 1995;123. doi:10.7326/acpjc-1995-123-3-a12.
3. Huang X, Lin J, Demner-Fushman D. Evaluation of PICO as a knowledge representation for clinical questions. AMIA Annu Symp Proc. 2006;2006:359–63. http://www.fpin.org/. Accessed 29 Mar 2021.
4. Marshall IJ, Wallace BC. Toward systematic review automation: A practical guide to using machine learning tools in research synthesis. Systematic Reviews. 2019;8:163. doi:10.1186/s13643-019-1074-9.
5. Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. doi:10.1186/1471-2288-14-43.
6. Hooijmans CR, De Vries RBM, Ritskes-Hoitinga M, Rovers MM, Leeflang MM, IntHout J, et al. Facilitating healthcare decisions by assessing the certainty in the evidence from preclinical animal studies. PLoS One. 2018;13.
7. Wallace BC, Kuiper J, Sharma A, Zhu MB, Marshall IJ. Extracting PICO Sentences from Clinical Trial Reports using Supervised Distant Supervision. J Mach Learn Res. 2016;17. http://www.ncbi.nlm.nih.gov/pubmed/27746703. Accessed 3 Mar 2019.
8. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997;9:1735–80. doi:10.1162/neco.1997.9.8.1735.
9. Jin D, Szolovits P. PICO Element Detection in Medical Text via Long Short-Term Memory Neural Networks. In: Proceedings of the BioNLP 2018 workshop. Stroudsburg, PA, USA: Association for Computational Linguistics; 2018. p. 67–75. doi:10.18653/v1/W18-2308.
10. Chabou S, Iglewski M. Combination of conditional random field with a rule based method in the extraction of PICO elements. BMC Med Inform Decis Mak. 2018;18:128. doi:10.1186/s12911-018-0699-2.
11. Jin D, Szolovits P. Advancing PICO Element Detection in Biomedical Text via Deep Neural Networks. Bioinformatics. 2018;36:3856–62. http://arxiv.org/abs/1810.12780. Accessed 6 Feb 2021.
12. Sutton C, McCallum A. An introduction to conditional random fields. Found Trends Mach Learn. 2011;4:267–373. doi:10.1561/2200000013.
13. Brockmeier AJ, Ju M, Przybyła P, Ananiadou S. Improving reference prioritisation with PICO recognition. BMC Med Inform Decis Mak. 2019;19:256. doi:10.1186/s12911-019-0992-8.
14. Nye B, Yang Y, Li JJ, Marshall IJ, Patel R, Nenkova A, et al. A corpus with multi-level annotations of patients, interventions and outcomes to support language processing for medical literature. In: ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers). 2018. p. 197–207. doi:10.18653/v1/p18-1019.
15. Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online Learning of Social Representations. Proc ACM SIGKDD Int Conf Knowl Discov Data Min. 2014;:701–10. doi:10.1145/2623330.2623732.
16. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR. 2018. https://github.com/tensorflow/tensor2tensor. Accessed 21 Oct 2019.
17. Liao J, Ananiadou S, Currie GL, Howard BE, Rice A, Sena ES, et al. Automation of citation screening in pre-clinical systematic reviews. bioRxiv. 2018;:280131. doi:10.1101/280131.
18. Finkel JR, Grenager T, Manning C. Incorporating non-local information into information extraction systems by Gibbs sampling. In: ACL-05 - 43rd Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference. Association for Computational Linguistics (ACL); 2005. p. 363–70. doi:10.3115/1219840.1219885.
19. Neumann M, King D, Beltagy I, Ammar W. ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing. Association for Computational Linguistics (ACL); 2019. p. 319–27.
20. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Advances in Neural Information Processing Systems. 2017. p. 5999–6009. http://arxiv.org/abs/1706.03762. Accessed 26 Aug 2019.
21. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2019. doi:10.1093/bioinformatics/btz682.
22. Gu Y, Tinn R, Cheng H, Lucas M, Usuyama N, Liu X, et al. Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing. 2020. http://arxiv.org/abs/2007.15779. Accessed 18 Sep 2020.
23. Loshchilov I, Hutter F. Decoupled Weight Decay Regularization. 7th Int Conf Learn Represent ICLR 2019. 2017. http://arxiv.org/abs/1711.05101. Accessed 1 Oct 2020.
24. Howard J, Ruder S. Universal language model fine-tuning for text classification. In: ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers). 2018. p. 328–39. doi:10.18653/v1/p18-1031.
25. Zhang J, He T, Sra S, Jadbabaie A. Why gradient clipping accelerates training: A theoretical justification for adaptivity. 2019. http://arxiv.org/abs/1905.11881. Accessed 1 Oct 2020.
26. Ramshaw LA, Marcus MP. Text Chunking using Transformation-Based Learning. 1995;:157–76. http://arxiv.org/abs/cmp-lg/9505040. Accessed 7 May 2021.
27. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural Architectures for Named Entity Recognition. 2016 Conf North Am Chapter Assoc Comput Linguist Hum Lang Technol NAACL HLT 2016 - Proc Conf. 2016;:260–70. http://arxiv.org/abs/1603.01360. Accessed 19 Apr 2021.
28. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training Recurrent Neural Networks. 30th Int Conf Mach Learn ICML 2013. 2012; PART 3:2347–55. http://arxiv.org/abs/1211.5063. Accessed 18 Nov 2020.
29. Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space. 2013. http://ronan.collobert.com/senna/. Accessed 1 Apr 2019.
30. Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional Semantics Resources for Biomedical Text Processing. Proc 5th Lang Biol Med Conf (LBM 2013). 2013;:39–44.
31. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. 2019. http://arxiv.org/abs/1910.03771. Accessed 13 Feb 2021.
32. Hiroki Nakayama. seqeval: A Python framework for sequence labeling evaluation. 2018. https://github.com/chakki-works/seqeval. Accessed 7 May 2021.
33. Ruder S, Plank B. Strong Baselines for Neural Semi-supervised Learning under Domain Shift. ACL 2018 - 56th Annu Meet Assoc Comput Linguist Proc Conf (Long Pap. 2018;1:1044–54. http://arxiv.org/abs/1804.09530. Accessed 16 Apr 2021.
34. Achakulvisut T, Acuna D, Kording K. Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset XML Dataset. J Open Source Softw. 2020;5:1979. doi:10.21105/joss.01979.
35. Gao S, Kotevska O, Sorokine A, Christian JB. A pre-training and self-training approach for biomedical named entity recognition. PLoS One. 2021;16 2 February. doi:10.1371/journal.pone.0246310.