1. Nelson, A.L., Dhimolea, E. & Reichert, J.M. Development trends for human monoclonal antibody therapeutics. Nature Reviews Drug Discovery 9, 767-774 (2010).
2. Shultz, L.D., Ishikawa, F. & Greiner, D.L. Humanized mice in translational biomedical research. Nature Reviews Immunology 7, 118-130 (2007).
3. Zhu, F., Nair, R.R., Fisher, E.M.C. & Cunningham, T.J. Humanising the mouse genome piece by piece. Nature Communications 10(2019).
4. Douam, F. et al. Selective expansion of myeloid and NK cells in humanized mice yields human-like vaccine responses. Nature Communications 9(2018).
5. Masemann, D., Ludwig, S. & Boergeling, Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. International Journal of Molecular Sciences 21, 9289 (2020).
6. Erwood, S. & Gu, B. Embryo-based large fragment knock-in in mammals: Why, how and what’s next. Genes 11(2020).
7. Li, K., Wang, G., Andersen, T., Zhou, P. & Pu, W.T. Optimization of genome engineering approaches with the CRISPR/Cas9 system. PLoS ONE 9(2014).
8. Gurumurthy, C.B. et al. Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: A multi-center evaluation. Genome Biology 20(2019).
9. Brinster, R.L., Chen, H.Y., Trumbauer, M.E., Yagle, M.K. & Palmiter, R.D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proceedings of the National Academy of Sciences of the United States of America 82, 4438-4442 (1985).
10. Garrick, D., Sutherland, H., Robertson, G. & Whitelaw, E. Variegated expression of a globin transgene correlates with chromatin accessibility but not methylation status. Nucleic Acids Research 24, 4902-4909 (1996).
11. Henikoff, S. Conspiracy of silence among repeated transgenes. BioEssays 20, 532-535 (1998).
12. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/cas-mediated genome engineering. Cell 153, 910-918 (2013).
13. Goodwin, L.O. et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Research 29, 494-505 (2019).
14. Mehtali, M., LeMeur, M. & Lathe, R. The methylation-free status of a housekeeping transgene is lost at high copy number. Gene 91, 179-184 (1990).
15. Calero-Nieto, F.J., Bert, A.G. & Cockerill, P.N. Transcription-dependent silencing of inducible convergent transgenes in transgenic mice. Epigenetics and Chromatin 3(2010).
16. Smirnov, A. et al. DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote. Nucleic Acids Research 48, 719-735 (2020).
17. McBurney, M.W., Mai, T., Yang, X. & Jardine, K. Evidence for repeat-induced gene silencing in cultured mammalian cells: Inactivation of tandem repeats of transfected genes. Experimental Cell Research 274, 1-8 (2002).
18. Zambrowicz, B.P. et al. Disruption of overlapping transcripts in the rosa beta-geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America 94, 3789-3794 (1997).
19. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genetics 21, 70-71 (1999).
20. Strathdee, D., Ibbotson, H. & Grant, S.G. Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent. PLoS One 1, e4 (2006).
21. Giel-Moloney, M., Krause, D.S., Chen, G., Van Etten, R.A. & Leiter, A.B. Ubiquitous and uniform in vivo fluorescence in ROSA26-EGFP BAC transgenic mice. Genesis 45, 83-89 (2007).
22. Chen, C.m., Krohn, J., Bhattacharya, S. & Davies, B. A comparison of exogenous promoter activity at the ROSA26 locus using a PhiC31 integrase mediated cassette exchange approach in mouse es cells. PLoS ONE 6(2011).
23. Barletta, R.G., Kim, D.D., Snapper, S.B., Bloom, B.R. & Jacobs Jr, W.R. Identification of expression signals of the mycobacteriophages Bxb1, L1 and TM4 using the Escherichia-Mycobacterium shuttle plasmids pYUB75 and pYUB76 designed to create translational fusions to the lacZ gene. Journal of General Microbiology 138, 23-30 (1992).
24. Mediavilla, J. et al. Genome organization and characterization of mycobacteriophage Bxb1. Molecular Microbiology 38, 955-970 (2000).
25. Bai, H. et al. Single-molecule analysis reveals the molecular bearing mechanism of DNA strand exchange by a serine recombinase. Proceedings of the National Academy of Sciences of the United States of America 108, 7419-7424 (2011).
26. Russell, J.P., Chang, D.W., Tretiakova, A. & Padidam, M. Phage Bxb1 integrase mediates highly efficient site-specific recombination in mammalian cells. BioTechniques 40, 460-464 (2006).
27. Keravala, A. et al. A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Molecular Genetics and Genomics 276, 135-146 (2006).
28. Fogg, P.C.M., Colloms, S., Rosser, S., Stark, M. & Smith, M.C.M. New applications for phage integrases. Journal of Molecular Biology 426, 2703-2716 (2014).
29. Olorunniji, F.J., Rosser, S.J. & Stark, W.M. Site-specific recombinases: Molecular machines for the Genetic Revolution. Biochemical Journal 473, 673-684 (2016).
30. Ghosh, P., Kim, A.I. & Hatfull, G.F. The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Molecular Cell 12, 1101-1111 (2003).
31. Ghosh, P., Wasil, L.R. & Hatfull, G.F. Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biology 4, 0964-0974 (2006).
32. Merrick, C.A., Zhao, J. & Rosser, S.J. Serine Integrases: Advancing Synthetic Biology. ACS Synthetic Biology 7, 299-310 (2018).
33. Thomson, J.G. & Ow, D.W. Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44, 465-476 (2006).
34. Xu, Z. et al. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnology 13(2013).
35. Carroll, D. Genome editing by targeted chromosomal mutagenesis. in Chromosomal Mutagenesis: Second Edition 1-13 (2014).
36. Chao, G., Travis, C. & Church, G. Measurement of large serine integrase enzymatic characteristics in HEK293 cells reveals variability and influence on downstream reporter expression. Febs j (2021).
37. Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M. & Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32, 279-284 (2014).
38. Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187-97 (2015).
39. Jusiak, B. et al. Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-Specific Integrase System in Mammalian Cells. ACS Synthetic Biology 8, 16-24 (2019).
40. McCray Jr, P.B. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. Journal of Virology 81, 813-821 (2007).
41. Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nature Biotechnology 38, 433-438 (2020).
42. Chow, K.-H.K. et al. Imaging cell lineage with a synthetic digital recording system. Science 372, eabb3099 (2021).
43. Duportet, X. et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Research 42, 13440-13451 (2014).
44. Peirce, J.L., Lu, L., Gu, J., Silver, L.M. & Williams, R.W. A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genetics 5(2004).
45. Churchill, G. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36, 1133-7 (2004).
46. Babinet, C. & Cohen-Tannoudji, M. Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. An Acad Bras Cienc 73, 365-83 (2001).
47. Brosh, R. et al. A versatile platform for locus-scale genome rewriting and verification. Proceedings of the National Academy of Sciences of the United States of America 118(2021).
48. Czechanski, A. et al. Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc 9, 559-74 (2014).
49. Taft, R.A., Davisson, M. & Wiles, M.V. Know thy mouse. Trends in Genetics 22, 649-653 (2006).
50. Qin, W. et al. Efficient CRISPR/cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200, 423-430 (2015).
51. Wang, W. et al. Delivery of Cas9 Protein into Mouse Zygotes through a Series of Electroporation Dramatically Increases the Efficiency of Model Creation. Journal of Genetics and Genomics 43, 319-327 (2016).
52. Baer, A. & Bode, J. Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Current Opinion in Biotechnology 12, 473-480 (2001).
53. Seibler, J. & Bode, J. Double-reciprocal crossover mediated by FLP-recombinase: A concept and an assay. Biochemistry 36, 1740-1747 (1997).
54. Wallace, H.A.C. et al. Manipulating the Mouse Genome to Engineer Precise Functional Syntenic Replacements with Human Sequence. Cell 128, 197-209 (2007).
55. Turan, S., Zehe, C., Kuehle, J., Qiao, J. & Bode, J. Recombinase-mediated cassette exchange (RMCE) - A rapidly-expanding toolbox for targeted genomic modifications. Gene 515, 1-27 (2013).
56. Inniss, M.C. et al. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Biotechnology and Bioengineering (2017).
57. Nottle, M.B. et al. Effect of DNA concentration on transgenesis rates in mice and pigs. Transgenic Research 10, 523-531 (2001).
58. Schedl, A. et al. A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic acids research 21, 4783-4787 (1993).
59. Montoliu, L., Bock, C.T., Schütz, G. & Zentgraf, H. Visualization of large DNA molecules by electron microscopy with polyamines: application to the analysis of yeast endogenous and artificial chromosomes. J Mol Biol 246, 486-92 (1995).
60. Ow, D.W. Recombinase-mediated Gene Stacking as a Transformation Operating System. Journal of Integrative Plant Biology 53, 512-519 (2011).
61. Olorunniji, F.J. et al. Multipart DNA assembly using site-specific recombinases from the large serine integrase family. in Methods in Molecular Biology Vol. 1642 303-323 (2017).
62. Sclimenti, C.R., Thyagarajan, B. & Calos, M.P. Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Research 29, 5044-5051 (2001).
63. Li, H., Sharp, R., Rutherford, K., Gupta, K. & Van Duyne, G.D. Serine Integrase attP Binding and Specificity. Journal of molecular biology 430, 4401-4418 (2018).
64. Low, B.E., Kutny, P.M. & Wiles, M.V. Simple, efficient CRISPR-cas9-mediated gene editing in mice: Strategies and methods. in Methods in Molecular Biology Vol. 1438 19-53 (2016).