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Abstract 21 

Background: The body shape of pig is the most direct production index of pig, which 22 

can fully reflect the growth status of pig and is closely related to some important 23 

economic traits. In this study, genome-wide association study on seven body size 24 

traits, the body length (BL), height (BH), chest circumference (CC), abdominal 25 

circumference (AC), cannon bone circumference (CBC), rump width (RW) and chest 26 

width (CW) were conducted in Yorkshire pigs.  27 

Methods: Illumina Porcine 80K SNP chip were used to genotype 589 of 5,572 28 

Yorkshire pigs with body size records, and then the chip data was imputed to 29 

sequencing data. After quality control of imputed sequencing data, 784,267 SNPs 30 

were obtained, and the averaged linkage disequilibrium (r
2
) was 0.191. We used the 31 

single-trait model and the two-trait model to conduct single-step genome wide 32 

association study (ssGWAS) on seven body size traits. 33 

Results: A total of 198 significant SNPS were finally identified according to the P 34 

value and the contribution to the genetic variance of individual SNP. 11 candidate 35 

genes (CDH13, SIL2, CDC14A, TMRPSS15, TRAPPC9, CTNND2, KDM6B, 36 

CHD3, MUC13, MAPK4 and HMGA1) were found to be associated with body size 37 

traits in pigs, KDM6B and CHD3 jointly affect AC and CC, and MUC13 jointly 38 

affect RW and CW. These genes are involved in the regulation of bone growth and 39 

development as well as the absorption of nutrients and are associated with obesity. 40 

HMGA1 is proposed as strong candidate gene for body size traits because of its 41 



important function and high consistency with other studies regarding the regulation of 42 

body size traits. Our results could provide valuable information for pig breeding based 43 

on molecular breeding. 44 

Keywords: pigs, body size traits, ssGWAS 45 

Introduction 46 

Pork is widely used as an important animal protein resource and has become one of 47 

the main sources of human protein. Commercial pigs (e.g. Duroc, Yorkshire and 48 

Landrace pigs) have the characteristics of fast growth, high feed utilization rate, high 49 

lean meat rate and obvious economic benefits. Therefore, it is not only a large number 50 

of breeding production, but also the focus of research. The body size trait is one kind 51 

of important phenotypic trait that can reflect the overall appearance of animals. 52 

Compared with the description of physical appearance, body size traits can 53 

objectively reflect the response of pigs to environment and other aspects[35]. In pig 54 

breeding, the body shape character index is often used as the most direct production 55 

index of pig. Body size is a typical quantitative (or complex) trait, understanding the 56 

genetic mechanism of body size differences among individuals can effectively help 57 

control the growth and production of animals[34]. At present, there are many 58 

researches on genetic parameters of pig external traits, which accelerate the process of 59 

genetic improvement of related traits. With the development of molecular 60 



biotechnology, many studies have been carried out to clarify the genetic basis of pig 61 

body size traits.  62 

By far, 1172 QTLs have been found related to body size traits in pigs according to 63 

PigQTLdb database (http://www.genome.iastate.edu/cgibin/QTLdb/ss/index). 64 

Although a range of researches have been done in QTL mapping, wide confidence 65 

intervals (covering more than 20 CM) for the positions of QTL remain that have 66 

rarely been replicated[39; 42]. A new research era was initiated with advances in 67 

single nucleotide polymorphism (SNP) chip and sequencing technology, and genome 68 

wide association study (GWAS) has become one of the most efficient methods to 69 

detect genetic variation in livestock[30]. Compared with traditional QTL localization, 70 

GWAS has more advantages in mining the intensity of medium-potency variation 71 

sites and defining the accuracy of genome segments containing variation sites[19; 26; 72 

38; 41]. Although a large number of genome-wide association studies have been 73 

carried out in pigs, only few GWAS focused on identifying genes related to external 74 

traits. In particular, the investigation on body height, cannon bone circumference, 75 

rump width and other important body size traits are still lacking. 76 

Marker density is one key factor affecting the efficiency of GWAS as gene mapping 77 

mainly relies on the linkage disequilibrium between causal mutation and markers[9]. 78 

Whole genome sequence data can definitely meet such requirements. In recent years, 79 

with the rapid development of the new generation of sequencing technology, the cost 80 

http://www.genome.iastate.edu/cgibin/QTLdb/ss/index


of sequencing has been reduced rapidly, on one hand, a large number of samples and 81 

the subsequent processing of sequence data are still time-consuming and costly, 82 

limiting its utilization in genetic analysis. On the other hand, genotype imputation 83 

provides one efficient tool to improve the marker density of SNP chip based on 84 

sequence data. It can accurately predict the genotypes of polymorphic sites not 85 

covered by the widely used SNP chip, allowing more genetic loci to be applied to 86 

association analysis and improving the possibility of discovering new pathogenic 87 

genes [32; 45].In this study, we used imputation-based whole genome sequence data 88 

to carry out GWAS on seven body size traits in pigs. 89 

Materials and methods 90 

Ethics statement 91 

The whole recording procedure of ear tissue samples was carried out in strict 92 

accordance with the protocol approved by the Institutional Animal Care and Use 93 

Committee (IACUC) at the China Agricultural University. The IACUC of the China 94 

Agricultural University approved this study (permit number DK996). 95 

Animals and phenotypes 96 

Yorkshire pigs born 2013-2016 from one pig breeding farm in Beijing were collected 97 

in this study. Performance test on seven body size traits were carried out at the body 98 

weight of about 100 kg for pigs. In total, 5,572 Yorkshire pigs with phenotypic 99 



records and pedigree information were selected. The seven body size traits included 100 

body length (BL), body height (BH), chest circumference (CC), abdominal 101 

circumference (AC), cannon bone circumference (CBC), chest width (CW) and rump 102 

width (RW). Table 1 presents the descriptive statistics of body weight and seven body 103 

size traits. There were 4898 records for AC and 5572 records for the other six body 104 

size traits and body weight. Normal test showed all the traits followed normal 105 

distribution, and the body weight had the largest standard deviation of 12.59 and 106 

coefficient of variation of (12.43%), it was used as a covariate considering its 107 

influence on the body size traits in further analysis.  108 

Genotype data and imputation  109 

In this study, 589 out of 5572 Yorkshire pigs with body size records were genotyped 110 

using the PorcineSNP80 Bead Chip (Illumina, San Diego, CA), which includes 111 

68,528 SNPs across the whole pig genome. In order to improve the marker density, 112 

the genotyped animals with another 6103 pigs genotyped with PorcineSNP80 [43] 113 

were imputed to whole genome sequence data using Beagle 4.1[10]. A wide 114 

collection of 289 sequenced pigs all with average sequencing depth of ~25X from 6 115 

different pig breeds were used as reference data for imputation and each breed 116 

contained 24 to 94 pigs. The composition of reference data and the SNP calling of 117 

these individuals were described by Yan et al.[54]. After SNP calling, 46,766,110 118 

SNPs were retained as the reference panel for imputation. On average, the genotype 119 

concordance rate across all variants was 92%, which is sufficient for further 120 



analysis[43]. After imputation, in this study, the following genotype quality control 121 

procedure was carried out using the PLINK software (v1.90)[36]. (1) SNPs with 122 

minor allele frequency (MAF) lower than 0.01 and deviated from Hardy - Weinberg 123 

equilibrium (P < 10
-6

) were excluded and only variants located on autosomes were 124 

used for further analysis;(2) the SNP with call rate less than 0.95 were removed;(3) 125 

individuals with call rate less than 0.90 were excluded. In addition, in order to 126 

decrease the influence of the dependence of adjacent markers on the high false 127 

positive of GWAS analysis, the SNP were further pruned, the SNP with linkage 128 

disequilibrium (r
2
) in slide window of 50 SNPs less than 0.9 were selected. Finally, all 129 

the genotyped animals and 784267 SNPs were retained.  130 

Statistical models 131 

genetic correlation 132 

According to the information of 5,572 pigs in this study, the restricted maximum 133 

likelihood method (AI-REML) in DMU v6.0 software[31] was used to estimate the 134 

genetic correlations of seven body size traits.  135 

The animal model was used to estimate the genetic parameters: 136 

e+tZ+aZ+bX+μ=y 21 , 137 

with 138 
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where, y is the vector of phenotypic values of each body size trait; μ is the population 140 

mean; b is the fixed effect of herd-year-season; a is the vector of additive genetic 141 

effects; t is the covariate vector of body weight effects; e is a vector of residual 142 

effects. X, Z1 and Z2 are incidence matrices associating b, a and t with y, 143 

respectively. A is the genetic relationship matrix, five generations of pedigree were 144 

traced back to construct A, and σa
2
 is the additive genetic variance. I is the identity 145 

matrix of appropriate dimension, σt
2
 is the variance of body weight effect and σe

2
 is 146 

the residual variance. 147 

Subsequently, genetic correlations were calculated based on the variance components 148 

as follows: 149 

21 aa

21

A σσ
)a,acov(

=r  150 

where, rA is the genetic correlation between trait 1 and trait 2, a1 and a2 represent the 151 

additive genetic values of trait 1 and trait 2 for same individuals, cov (a1, a2) and σa1, 152 

σa2 refer to the genetic covariance of two traits and the genetic standard deviation of 153 

trait 1 and trait 2, respectively. 154 



Genome-wide Association Study 155 

In this study, single-step GWAS (ssGWAS) , which can simultaneously use all the 156 

SNP information and utilize the ungenotyped animals with phenotypic records[47], 157 

was implemented to identify significant SNPs associated with body size traits. 158 

Considering the genetic correlations between body size traits, two-trait ssGWAS 159 

model was also conducted on traits with high genetic correlations. 160 

Single-trait ssGWAS 161 

Single-trait ssGWAS model was used for three body size traits BL,BH and CBC.  162 

𝐲 = 𝐗𝐛 + 𝛄𝐖+ 𝐙𝐠 + 𝐞 

where y is the vector of phenotypic values, 𝐛 is the vector of fixed effects including 163 

herd-year-season-sex, 𝐖 is the covariate of body weight, 𝐠 is the vector of additive 164 

genetic effects, following a normal distribution of N(𝟎, 𝐇𝜎𝑔2), in which H is the 165 

matrix of additive genetic relationships incorporating both pedigree and genomic 166 

information, 𝜎𝑔2  is the additive genetic variance,  𝐞  is the vector of random 167 

residuals with distribution of N(0, 𝐈𝜎𝑒2), in which I is the identity and 𝜎𝑒2 is the 168 

residual variance. X, W and Z is the incidence matrix associating b, w, g with y, 169 

respectively. 170 

The genotyped and ungenotyped animals were considered simultaneously based on a 171 

H matrix[4]. The inverse of the H matrix was written as follows: 172 



𝑯−𝟏 = [𝟎 𝟎𝟎 𝑮𝒘−𝟏 − 𝑨𝟐𝟐−𝟏] + 𝑨−𝟏 

where 𝑨−𝟏 is the inverse of the numerator relationship matrix, 𝑨𝟐𝟐−𝟏 is only the 173 

inverse of the pedigree-based relationship matrix for the genotyped animals, and 𝑮𝒘−𝟏 174 

is the inverse of the genomic relationship matrix;, G weight markers were obtained by 175 

reciprocals of expected marker variance[46].  176 

The SNP effects could be estimated by ssGWAS. The proportion of genetic variance 177 

explained by single SNP was calculated as follows: 178 

𝑽𝒂𝒓(𝒁𝒋𝑢̂𝑗) 𝝈𝒂𝟐 × 𝟏𝟎𝟎% 

where 𝝈𝒂𝟐 is the total genetic variance, 𝒁𝒋 is a vector of the gene content of the jth 179 

SNP for all animals, and 𝑢̂𝑗  is the estimated marker effect of the jth SNP. 180 

Two-trait ssGWAS 181 

According to the genetic correlation estimations, four body size traits with high 182 

genetic correlations (CC and AC, RW and CW) were carried out using two-trait 183 

ssGWAS model. 184 

[𝒚𝟏𝒚𝟐]=[𝑿𝟏 𝟎𝟎 𝑿𝟐] [𝒃𝟏𝒃𝟐]+[𝛄𝟏𝛄𝟐] [𝑾𝟏𝑾𝟐] + [𝒁𝟏 𝟎𝟎 𝒁𝟐] [𝒈𝟏𝒈𝟐]+[𝒆𝟏𝒆𝟐], 185 

where [𝒚𝟏𝒚𝟐] is the vector of observation values of trait I and II, 𝒃𝟏 and 𝒃𝟐 are the 186 

vector of fixed effects of herd-year-season-sex of trait I and II, 𝑿𝟏 and 𝑿𝟐 are the 187 

incidence matrix associating 𝒃𝟏 and 𝒃𝟐 with 𝒚𝟏 and 𝒚𝟐, [𝑾𝟏𝑾𝟐] is the vector of 188 



covariate of body weight of trait I and II, 𝛄𝟏 and 𝛄𝟐 are the regression coefficient 189 

associating 𝑾𝟏 and 𝑾𝟐, [𝒈𝟏𝒈𝟐] is the vector of additive genetic effects of the two 190 

traits, following a normal distribution of N(𝟎, 𝐇𝐌),where M=[ 𝝈𝒈𝟏𝟐 𝝈𝒈𝟏𝟐𝟐𝝈𝒈𝟏𝟐𝟐 𝝈𝒈𝟐𝟐 ] is the 191 

additive genetic variance and covariance matrix of the two traits, 𝒁𝟏 and 𝒁𝟐 are the 192 

incidence matrix associating 𝒈𝟏 and 𝒈𝟐 with 𝒚𝟏 and 𝒚𝟐, [𝒆𝟏𝒆𝟐] is the vector of 193 

random errors with distribution of N(𝟎, 𝐈𝐑), where 𝐈 is the  identity matrix and 194 

R=[ 𝝈𝒆𝟏𝟐 𝝈𝒆𝟏𝟐𝟐𝝈𝒆𝟏𝟐𝟐 𝝈𝒆𝟐𝟐 ] is the residual variance and covariance matrix of the two traits. 195 

In this study, for both single trait model and two-trait model of ssGWAS, blupf90 196 

[5]was implemented to estimate genomic breeding values (GEBV), and afterwards,  197 

based on GEBV, SNP effects and P-values were estimated via postGSf90.The P value 198 

of each marker was calculated as follows[3]: 199 

𝑷𝒊 = 𝑷𝒕( 𝑢𝑖√𝛔̂ 𝒊𝟐/𝒏 , 𝒏 − 𝟏), 200 

where 𝑷𝒊 is the distribution function of t distribution, 𝑢̂𝑖  is ith SNP effect, 𝛔̂ 𝒊𝟐 is the 201 

genetic variance of ith SNP, n is the number of animals with ith SNP. In addition, the 202 

proportion of genetic variance explained by the ith SNP could also be calculated as 203 𝛔̂ 𝒊𝟐/𝛔̂𝒈𝟐 . Manhattan plots of SNP variance were obtained by the “qqman” R 204 

package[14]. 205 

In order to control false positives, the False Discovery Rate (FDR)[6; 52] method for 206 

multiple testing was used as follow: 207 



FDR=m*PMax /n 208 

where m is the number of times to be tested, n is the number of significant SNPs at 209 

assigned FDR level, e.g. 0.05. PMax is the genome-wide significance level empirical 210 

P-value of FDR adjusted. Based on the P-values of SNPs obtained by ssGWAS, the 211 

empirical P-value of FDR adjusted at the genome-wide significance level of 0.05 was 212 

calculated on each trait in this study. 213 

Identification of candidate genes 214 

After identifying significant SNPs by ssGWAS, the genes located in the 50Kb 215 

downstream and 50 Kb upstream region of the significant SNPs were determined 216 

using BedTools[37] and pig reference gene annotation 217 

(http://www.ensembl.org/Sus_scrofa/Info/Index/; Sus scrofa 11.1 genome version). 218 

Using the R package bioconductor (http://www.bioconductor.org/) to identify the 219 

related pathways and functional annotation. QTLdb 220 

(http://www.animalgenome.org/cgi-bin/QTLdb/SS/download?file= gbpSS_11.1) was 221 

used to annotate significant SNPs located in previously mapped QTLs in pigs. R 222 

package 'Cluster Profiler'[55] was used to carry out Gene Ontology (GO) and Kyoto 223 

research on annotated candidate genes Encyclopedia of Genes and Genomes (KEGG) 224 

enrichment analysis. 225 

Results 226 

http://www.ensembl.org/Sus_scrofa/Info/Index
http://www.bioconductor.org/


Genetic correlations of body size traits 227 

Table 2 shows the genetic correlations of seven body size traits. The genetic 228 

correlations ranged from -0.286 to 0.840 with standard errors ranging from 0.028 to 229 

0.106. Among the seven body size traits, chest circumference (CC) and abdominal 230 

circumference (AC), chest width (CW) and rump width (RW) had the higher genetic 231 

correlations of 0.747 and 0.840 with standard errors of 0.055 and 0.028, respectively. 232 

The genetic correlations between other traits were lower than 0.3, and some traits 233 

were almost not genetic correlated with other traits, e.g. body length (BL) had very 234 

low genetic correlation of -0.010,0.03, -0.01,0.01 with body height (BH), CC, AC, 235 

CW, respectively. 236 

Identification of significant SNPs associated with body size traits 237 

Two criteria of P value and SNP effect were respectively used to determine the SNPs 238 

associated with body size traits. As to the P value, after the 0.05 significance level of 239 

the whole genome was adjusted, the PMax values of FDR-based multiple tests were 240 

9.26E-06 for BL, 1.08E-05 for BH, 1.02E-05 for CBC, 9.74E-06 for AC, 1.05E-05 for 241 

CC, 9.60E-06 for RW, and 1.01E-05 for CW. As shown in Table 3, a total of 88 242 

significant SNPs was identified for seven body size traits. The Manhattan plots of the 243 

three traits BL, BH and CBC using the single trait model are shown in Figure 1. For 244 

BL, a total of 9 significant SNPs reached the genome-wide significance level, totally 245 

accounting for 0.0085% of the genetic variance. These significant SNPS were located 246 



on SSC1, SSC6, SSC8, SSC13, SSC14, SSC16, and SSC17.The SNP at 247 

SSC17:33632497 explained the largest genetic variance (0.0029%). For BH, only 6 248 

SNPs were genome-wide significant, accounting for a total of 0.0123% of genetic 249 

variance. They were located on SSC3, SSC5, SSC14, and SSC16.The interpretation of 250 

scc16: 886074 has the largest genetic variance (0.0082%). For CBC, there were 15 251 

significant SNPs at the genome-wide level, which explained 0.0267% of the genetic 252 

variance, and the most significant SNPs were closely located on SSC1. For the two 253 

pairs of genetic correlated traits using the two-trait model, the Manhattan plots of AC 254 

and CC, RW and CW are shown in Figure 2. In total, 8, 17, 9, and 24 SNPs were 255 

identified associated with AC, CC, RW, and CW, respectively, and these SNPs 256 

explained 0.0109%, 0.0242%, 0.0099% and 0.0281% of genetic variances for the 257 

corresponding traits. For each trait, the genetic variance explained by a single 258 

significant SNP was very small, the largest of which for each trait were 0.0051% 259 

(SSC5:15137502) , 0.0067% (SSC4:64552365), 0.0038% (SSC9:2330339) and 260 

0.0065% (SCC7:115471416), respectively. Although the genetic correlations existed 261 

among seven body size traits, no common significant SNPs were found. 262 

Considering the small contribution of above significant SNPs to the genetic variance, 263 

the proportion of genetic variance explained by each SNP were also illustrated as 264 

shown in Figure 3 in this study. Top 20 SNPs with the largest genetic variance were 265 

selected for each trait(Table 3), SNPs for BL were located on SSC17, BH on SSC2, 266 

SSC5 and SSC16, CBC on SSC7 and SSC4, SNPs with largest genetic variance for 267 



AC and CC are located on SSC12, those for RW and CW were on SCC6 SCC7, 268 

SCC13 and SCC17. For each body size trait, BL, BH, CBC, AC, CC, RW and CW, 269 

the top 20 SNPs explained 2.01%, 1.56%, 1.63%, 2.39%, 2.32%, 1.54% and 1.23% of 270 

the genetic variance, respectively. Interestingly, the top 20 SNPs for AC and CC were 271 

same, RW and CW shared half of the 20 SNPs. In total, 110 SNPs with larger 272 

proportion of explanatory genetic variance were retained for further analysis (Stable 273 

1). 274 

Identification of candidate genes 275 

All the significant SNPs identified by the two methods were annotated within the 50 276 

Kb downstream and upstream region with reference to the Sus scrofa 11.1 genome 277 

assembly. According to the two methods of SNP significance and explained genetic 278 

variance, 88 and 110 SNPs were identified without overlapping, and 64 and 40 genes 279 

were found near these SNPs and only two of them were common, respectively (Table 280 

3 and Stable 1). Six and seven genes were found to be related to the corresponding 281 

body size traits by the two methods. The biological processes and pathways involved 282 

in these genes include calcium channel proteins, lipid metabolism, and cell 283 

proliferation. 284 

Discussion 285 

The superiority of imputation-based WGS data 286 



Genotype marker density is one important factor affecting the efficiency of GWAS 287 

[9].With the increase of marker density, the linkage disequilibrium between markers 288 

and the target trait QTL is increased, it is helpful for QTL detection. In previous 289 

studies, the advantages of whole genome sequencing data have been 290 

demonstrated[49]. However, its high cost hampered the widely application of 291 

sequencing data. Genotype imputation was proved efficiently to impute the SNP chip 292 

data to sequencing data with high accuracy[20]. Our results indicated that 293 

imputation-based WGS data dramatically improved the power of GWAS, among the 294 

significant SNPs identified in this study, only 3 out of the 88 significant SNPs were 295 

located in the PorcineSNP80 SNP chip, the remaining 85 loci were identified in the 296 

sequencing data. Moreover, among the 110 non-repeating loci screened by 297 

interpretation variance, 101 are new loci after imputation, which indicates that  298 

imputed WGS data adds a lot of useful information 299 

Increasing marker density could lead to high linkage disequilibrium (LD) to improve 300 

the resolution of gene mapping, while it may also be a burden[24]. Too high LD 301 

between markers will cause noise and increase false positive[50]. One of the 302 

strategies to deal with such dilemma is to pre-select SNP, which can be done via SNP 303 

selection to only keep a set of SNPs that are mutually uncorrelated[11; 18].  304 

Therefore, we pruned SNPs according to the genome-wide sequence data to reduce 305 

the LD degree between SNPs, and retained the loci in the original 80K chip. In this 306 

study, 44003 out of the qualified 50179 SNPs in PorcineSNP80 chip according to the 307 



genotype quality control were retained, and the average linkage disequilibrium of the 308 

finally used 784，267 SNPs is similar to that of the chip data, the average r
2
 was 0.191 309 

and 0.195, respectively. This not only retains the original SNPs but also increases a 310 

large number of SNPS, and does not cause the increase of LD. 311 

The advantage of ssGWAS 312 

Single SNP regression model is widely used in GWAS to identify the association of 313 

SNP with traits of interest, whereas it usually yields a high false-positive rate due to 314 

ignoring the linkage disequilibrium between adjacent SNPs. Wang et al.[47] proposed  315 

Single-step GWAS (ssGWAS) that combines all the data (genotype, phenotype and 316 

pedigree information) in one step. It can simultaneously utilize all the markers 317 

compared with the single-marker regression genome-wide association analysis, 318 

resulting in higher power and accuracy[48]. In addition, ssGWAS is able to use 319 

sliding windows to simultaneously analyze multiple SNPs to reduce errors[8; 17], 320 

Wang et al. (2012) reported that ssGWAS achieved accuracy of 0.81 ± 0.02 using 321 

1500 genotype animals, which was more accurate than single SNP regression 322 

model[47]. Moreover, ssGWAS can utilize more individuals, the sample size in this 323 

study is not very large, but has a large number of phenotypic data of ungenotyped 324 

animals. Compared with traditional GWAS, ssGWAS can make full use of this part of 325 

information, expand the sample size to a certain extent, improve the accuracy of SNP 326 

effect estimation, and further improve the efficiency of SNP identification. 327 



The determination of significant SNP using P value or SNP effect  328 

Theoretically, the SNPs with smallest p values were supposed to explain relatively 329 

high proportion of genetic variance. Likewise, the SNPs with large effects should be 330 

significantly associated with the trait of interest. However, our results indicated that 331 

the SNPs with smallest P values did not have large effects, there was no overlap 332 

between the top 20 SNPs with smallest P values and with largest SNP effects for each 333 

trait. Therefore, in order to locate QTLs related to traits more accurately and 334 

comprehensively, this study identified significant SNPs from both P value and SNP 335 

effect. The proportion of genetic variance explained by most the significant SNPs was 336 

small (0.00004%-0.00653%) for all traits, and the maximum genetic variance of all 337 

SNPs was also not large (0.0557%-0.1205%), perhaps because too many SNPs were 338 

used in the sequencing data in this study, leading to small effect of each related SNP 339 

for each trait. It also indicates that SNPs controlling body size traits are widely 340 

distributed on the genome, fitting well the infinitesimal model. It was reported that for 341 

complex traits such as height, action sites are widely distributed across the entire 342 

genome, indicating that almost all genes are involved in the regulation of height[7]. 343 

Pleiotropic effects can lead to genetic correlation between traits. From the aspect of P 344 

value, no overlap of significant SNPs associated with two genetic related trait pairs 345 

AC and CC, RW and CW were detected in this study.  However, more common 346 

SNPs with largest effects (not statistically significant) were found in each pair of 347 



genetic related traits, e.g. the top 20 SNPs with largest effects for AC and CC were 348 

completely overlapped, these SNPs were adjacent to each other and located near 349 

SCC12:53132997. Therefore, it is speculated that these SNPs constitute an important 350 

QTL and jointly affect AC and CC. Similarly, there may be QTLs associated with 351 

RW and CW around SSC6:39553559 and SCC13:135373704. In addition, we took 20 352 

SNPs as a sliding window, and found that the top 20 windows with largest genetic 353 

effects respective for AC and CC were overlapped, as well for RW and CW. The 354 

above results further reflect 'one factor produces multiple effects', suggesting that 355 

highly genetic related traits are probably regulated by the same QTL. 356 

Potential Candidate Genes for BL、BH and CBC 357 

The body length (BL) is an important index to investigate the breeding performance 358 

of animals. According to bioinformatics analysis, CDH13 near SCC6:5671575 could 359 

be used as a candidate gene affecting body length. CDH13 is a unique cadherin[44] 360 

that regulates cell adhesion, signal transduction and cell growth[29], and plays an 361 

important role in the formation of tissues and organs[22]. The ingestion and transfer 362 

of Ca will affect the bone development of body for a long time[27], therefore, CDH13 363 

has a certain influence on the growth and development of the body. For BH, SIL2 was 364 

found to be associated with this trait near SCC2:46827557, Proteomic studies showed 365 

that SIL1 elevation alters the expression of proteins including crucial players in 366 

neurodegeneration, abnormal expression of SIL1 has an impact on the morphology of 367 



the body, which can reduce the body size[28]. CBC reflects the physical quality of the 368 

animal, whether it is strong or not. There are three candidate genes associated with 369 

CBC, CDC14A, TMPRSS15 and TRAPPC9. CDC14A is widely expressed in 370 

eukaryotic cell biology of a special kind of highly conservative dual specificity 371 

phosphatase, a variety of studies from yeast to human somatic cells have shown that 372 

CDC14 involves extensive roles, including embryonic development and body size[1]. 373 

TMPRSS15 has an impact on the digestive efficiency of animals, and has been found 374 

to be associated with the formation of cholesterol in humans and has been shown to 375 

be associated with the development of fat and body weight in mice[51]. TMPRSS15 376 

has also a higher variance ranking based on the SNP effect. The gene mutation of 377 

transporter particle complex 9 (TRAPPC9), a protein subunit of transporter particle II 378 

(TRAPPII), can lead to abnormal embryonic development, abnormal dietary behavior, 379 

and is associated with body mass index[2; 33]. 380 

Potential Candidate Genes for AC and CC 381 

AC and CC are a pair of highly genetically-related body size traits, which determine 382 

the body size of animals and are indicators to fatness and thinness. CTNND2 was 383 

closely related to AC according to the P value. Studies have shown that CTNND2 384 

participates in the regulation of cell proliferation and affects the body node number of 385 

zebrafish[57]. It is found that KDM6B and CHD3 jointly affect AC and CC. KDM 386 

subfamily 6 enzymes B (KAM6B) plays an important role in repression of 387 



developmental genes[25], and has a regulatory effect on chondrocyte differentiation, 388 

thus affecting bone growth and development[15]. CDH3 is a calcium-binding protein 389 

that is involved in calcium ion binding and protein binding and is associated with 390 

diseases such as malnutrition and developmental malformations. Studies have shown 391 

that CHD3 regulates the developmental morphology of zebrafish heart, thereby 392 

affecting the abdominal circumference and body shape of zebrafish[12]. 393 

Potential Candidate Genes for RW and CW 394 

For RW and CW, MUC13 was detected to affect both RW and CW. MUC13 395 

promotes cell proliferation and migration, inhibits apoptosis, and reduces adhesion 396 

through a number of signaling pathways[40], and has a certain effect on the 397 

absorption of intestinal nutrients, thus affecting the growth and development of bone 398 

and the organism. It was found that MAPK4 and HMGA1 affect RW and CW of pigs 399 

respectively. MAPK4 is mitogen-activated protein kinase 4, which is involved in the 400 

absorption and decomposition of sugars and the formation of fat, so it is related to 401 

obesity traits[53]. HMGA1 affects the expression of two IGFBP(insulin-like growth 402 

factor binding protein) protein species and plays an important role in cell growth and 403 

differentiation[13; 21]. Studies have shown that the deletion of HMGA1 gene results 404 

in a significant decrease in the body size of mice[16]. Moreover, a large number of 405 

studies have shown that HMGA1 is related to the body size character of pigs. Ji et 406 

al.[23] found HMGA1 was a candidate gene affecting body size of pig through 407 



genome-wide association analysis. Zhang et al[56] found that HMGA1 is expressed in 408 

pig limb cells and affects the growth and differentiation of chondrocytes. Because of 409 

the functional importance of HMGA1 and several studies have shown that it is highly 410 

associated with body size traits, it is worth being verified in the future. 411 

Conclusion 412 

In this study, among seven body size traits in pigs, CC and AC, CW and RW were 413 

highly genetic correlated with correlation of 0.747 and 0.840, respectively. We 414 

implemented ssGWAS to identify SNPs associated with body size traits based on two 415 

aspects of P value and the proportion of explanatory genetic variance of SNP. In total, 416 

198 SNPs were identified associated with seven body size traits in Yorkshire, 417 

correspondingly, 11 genes were related to body size traits, among which HMGA1 418 

could be worth being validated in further study. 419 

Data availability 420 

The ped and the map are not publicly available because the genotyped animals belong 421 

to commercial breeding companies, but are available from the corresponding author 422 

on reasonable request. 423 

Conflict of interest 424 

The authors declare that they have no competing interest. 425 



Author contributions 426 

XD and CD conceived and supervised the study. HT, HL and LF helped complete the 427 

imputation of the chip data and provide technical guidance. HT, JY, HL, YF collected 428 

the samples and recorded the phenotypes. JY and LF extracted the DNA for 429 

genotyping. HT, FX, YB and SY contributed to the visualization of data. HT and XD 430 

wrote and revised the manuscript. All authors read and approved the manuscript. 431 

Funding 432 

The authors are grateful to all the funding agencies. This work was supported by 433 

grants for the National Key Research and Development Project (2019YFE0106800, 434 

2018YFD0501000), China Agriculture Research System (CARS-35), Modern 435 

Agriculture Science and Technology Key Project of Hebei Province (19226376D), the 436 

National Natural Science Foundation of China (31671327).  437 

References: 438 

 1. Research progress in function of cell division cycle protein Cdc14A. Journal of Jilin 439 

Univeristy. Medicine edition. 2018;44(1671-587X(2018)44:5<1105:XBFLZQ>2.0.TX;2-55): 440 

1105-8. 441 

 2. Abbasi AA, Blaesius K, Hu H, Latif Z, Picker-Minh S,  Khan MN et al. Identification of a 442 

novel homozygous TRAPPC9 gene mutation causing non-syndromic  intellectual disability, 443 

speech disorder, and secondary microcephaly. Am J Med Genet B Neuropsychiatr Genet. 444 

2017;174(8): 839-45. doi:10.1002/ajmg.b.32602. 445 



 3. Aguilar I, Legarra A, Cardoso F, Masuda Y, Lourenco D,  Misztal I. Frequentist p-values 446 

for large-scale-single step genome-wide association, with an application to birth weight in 447 

American Angus cattle. GENETICS SELECTION EVOLUTION. 2019;51(28). 448 

doi:10.1186/s12711-019-0469-3. 449 

 4. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S,  Lawlor TJ. Hot topic: A unified 450 

approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation 451 

of Holstein final score. J Dairy Sci. 2010;93(2): 743-52. doi:10.3168/jds.2009-2730. 452 

 5. Aguilar I, Misztal I, Legarra A,  Tsuruta S. Efficient computation of the genomic 453 

relationship matrix and other matrices used in single-step evaluation. JOURNAL OF 454 

ANIMAL BREEDING AND GENETICS. 2011;128(6SI): 422-8. 455 

doi:10.1111/j.1439-0388.2010.00912.x. 456 

 6. BENJAMINI Y,  HOCHBERG Y. Controlling the false discovery rate - a practical and 457 

powerful approach to multiple testing. JOURNAL OF THE ROYAL STATISTICAL 458 

SOCIETY SERIES B-STATISTICAL METHODOLOGY. 1995;57(1): 289-300. 459 

doi:10.1111/j.2517-6161.1995.tb02031.x. 460 

 7. Boyle EA, Li YI,  Pritchard JK. An expanded view of complex traits: From polygenic to 461 

omnigenic. Cell. 2017;169(7): 1177-86. doi:10.1016/j.cell.2017.05.038. 462 

 8. Braz CU, Taylor JF, Bresolin T, Espigolan R, Feitosa F,  Carvalheiro R et al. Sliding 463 

window haplotype approaches overcome single SNP analysis limitations in identifying genes 464 

for meat tenderness in Nelore cattle. BMC Genet. 2019;20(1): 8. 465 

doi:10.1186/s12863-019-0713-4. 466 



 9. Brondum RF, Ma P, Lund MS,  Su G. Short communication: Genotype imputation within 467 

and across Nordic cattle breeds. J Dairy Sci. 2012;95(11): 6795-800. 468 

doi:10.3168/jds.2012-5585. 469 

10. Browning BL,  Browning SR. A unified approach to genotype imputation and 470 

Haplotype-Phase inference for large data sets of trios and unrelated individuals. The 471 

American Journal of Human Genetics. 2009;84(2): 210-23. doi:10.1016/j.ajhg.2009.01.005. 472 

11. Calus M,  Vandenplas J. SNPrune: An efficient algorithm to prune large SNP array and 473 

sequence datasets based on high linkage disequilibrium. Genet Sel Evol. 2018;50(1): 34. 474 

doi:10.1186/s12711-018-0404-z. 475 

12. Cho SH, Lee CH, Gi E, Yim Y, Koh HJ,  Kang K et al. The rice rolled fine striped (RFS) 476 

CHD3/Mi-2 chromatin remodeling factor epigenetically regulates genes involved in 477 

oxidative stress responses during leaf development. Front Plant Sci. 2018;9(364. 478 

doi:10.3389/fpls.2018.00364. 479 

13. Cleynen I,  Van de Ven WJ. The HMGA proteins: A myriad of functions (Review). Int J 480 

Oncol. 2008;32(2): 289-305. 481 

14. D. Turner S. Qqman: An R package for visualizing GWAS results using Q-Q and manhattan 482 

plots. Journal of open source software. 2018;3(25): 731. doi:10.21105/joss.00731. 483 

15. Dai J, Yu D, Wang Y, Chen Y, Sun H,  Zhang X et al. Kdm6b regulates cartilage 484 

development and homeostasis through anabolic metabolism. Ann Rheum Dis. 2017;76(7): 485 

1295-303. doi:10.1136/annrheumdis-2016-210407. 486 

16. Federico A, Forzati F, Esposito F, Arra C, Palma G,  Barbieri A et al. Hmga1/Hmga2 487 



double knock-out mice display a "superpygmy" phenotype. BIOLOGY OPEN. 2014;3(5): 488 

372-8. doi:10.1242/bio.20146759. 489 

17. Guerra FP, Suren H, Holliday J, Richards JH, Fiehn O,  Famula R et al. Exome 490 

resequencing and GWAS for growth, ecophysiology, and chemical and metabolomic 491 

composition of wood of Populus trichocarpa. BMC Genomics. 2019;20(1): 875. 492 

doi:10.1186/s12864-019-6160-9. 493 

18. Hazelett DJ, Conti DV, Han Y, Al OA, Easton D,  Eeles RA et al. Reducing GWAS 494 

complexity. Cell Cycle. 2016;15(1): 22-4. doi:10.1080/15384101.2015.1120928. 495 

19. Hirschhorn JN,  Daly MJ. Genome-wide association studies for common diseases and 496 

complex traits. Nature Reviews Genetics. 2005;6(2): 95-108. doi:10.1038/nrg1521. 497 

20. Hoze C, Fouilloux MN, Venot E, Guillaume F, Dassonneville R,  Fritz S et al. High-density 498 

marker imputation accuracy in sixteen French cattle breeds. Genet Sel Evol. 2013;45(33. 499 

doi:10.1186/1297-9686-45-33. 500 

21. Hristov AC, Cope L, Di Cello F, Reyes MD, Singh M,  Hillion JA et al. HMGA1 correlates 501 

with advanced tumor grade and decreased survival in pancreatic ductal adenocarcinoma. 502 

Modern Pathology. 2010;23(1 503 

): 98-104. doi:10.1038/modpathol.2009.139. 504 

22. Iotzova-Weiss G, Freiberger SN, Johansen P, Kamarachev J, Guenova E,  Dziunycz PJ et al. 505 

TLR4 as a negative regulator of keratinocyte proliferation. PLoS One. 2017;12(10): e185668. 506 

doi:10.1371/journal.pone.0185668. 507 

23. Ji J, Zhou L, Guo Y, Huang L,  Ma J. Genome-wide association study identifies 22 new loci 508 



for body dimension and body  weight traits in a White DurocxErhualian F2 intercross 509 

population. Asian-Australas J Anim Sci. 2017;30(8): 1066-73. doi:10.5713/ajas.16.0679. 510 

24. Joiret M, Mahachie JJ, Gusareva ES,  Van Steen K. Confounding of linkage disequilibrium 511 

patterns in large scale DNA based gene-gene interaction studies. BioData Min. 2019;12(11. 512 

doi:10.1186/s13040-019-0199-7. 513 

25. Jones SE, Olsen L,  Gajhede M. Structural Basis of Histone Demethylase KDM6B Histone 514 

3 Lysine 27 Specificity. Biochemistry. 2018;57(5): 585-92. 515 

doi:10.1021/acs.biochem.7b01152. 516 

26. Klein RJHJ. Complement factor h polymorphism in Age-Related macular degeneration. 517 

Science. 2005;308): 385-9. 518 

27. Kovacs CS. Maternal mineral and bone metabolism during pregnancy, lactation, and 519 

Post-Weaning recovery. Physiol Rev. 2016;96(2): 449-547. 520 

doi:10.1152/physrev.00027.2015. 521 

28. Labisch T, Buchkremer S, Phan V, Kollipara L, Gatz C,  Lentz C et al. Tracking effects of 522 

SIL1 increase: Taking a closer look beyond the consequences of elevated expression level. 523 

Mol Neurobiol. 2018;55(3): 2524-46. doi:10.1007/s12035-017-0494-6. 524 

29. Liu B, Song J, Luan J, Sun X, Bai J,  Wang H et al. Promoter methylation status of tumor 525 

suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell 526 

lung cancer. Exp Biol Med (Maywood). 2016;241(14): 1531-9. 527 

doi:10.1177/1535370216645211. 528 

30. Mackay TFC, Stone EA,  Ayroles JF. The genetics of quantitative traits: Challenges and 529 



prospects. Nature Reviews Genetics. 2009;10(8): 565-77. doi:10.1038/nrg2612. 530 

31. Madsen PAJJ. A user’s guide to DMU: A package for analysing multivariate mixed models.. 531 

2013. 532 

32. Marchini J,  Howie B. Genotype imputation for genome-wide association studies. NATURE 533 

REVIEWS GENETICS. 2010;11(7): 499-511. doi:10.1038/nrg2796. 534 

33. Mbimba T, Hussein NJ, Najeed A,  Safadi FF. TRAPPC9: Novel insights into its trafficking 535 

and signaling pathways in health and disease (Review). Int J Mol Med. 2018;42(6): 2991-7. 536 

doi:10.3892/ijmm.2018.3889. 537 

34. Niu P, Kim S, Choi B, Kim T, Kim J,  Kim K. Porcine insulin-like growth factor 1 (IGF1) 538 

gene polymorphisms are associated with body size variation. GENES & GENOMICS. 539 

2013;35(4): 523-8. doi:10.1007/s13258-013-0098-0. 540 

35. Ohnishi C,  Satoh M. Estimation of genetic parameters for performance and body 541 

measurement traits in Duroc pigs selected for average daily gain, loin muscle area, and 542 

backfat thickness. Livestock Science. 2018;214(161-6. doi:10.1016/j.livsci.2018.05.022. 543 

36. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR,  Bender D et al. PLINK: A 544 

tool set for Whole-Genome association and Population-Based linkage analyses. The 545 

American Journal of Human Genetics. 2007;81(3): 559-75. doi:10.1086/519795. 546 

37. Quinlan AR,  Hall IM. BEDTools: A flexible suite of utilities for comparing genomic 547 

features. Bioinformatics. 2010;26(6): 841-2. doi:10.1093/bioinformatics/btq033. 548 

38. Risch NMK. The future of genetic studies of complex human diseases. Epidemiology. 549 

1996;9): 350-4. 550 



39. Schreiweis MA, Hester PY,  Moody DE. Identification of quantitative trait loci associated 551 

with bone traits and body weight in an F2 resource population of chickens. Genetics 552 

Selection Evolution. 2005;37(6): 677-98. doi:10.1051/gse:2005023. 553 

40. Sheng YH, Triyana S, Wang R, Das I, Gerloff K,  Florin TH et al. MUC1 and MUC13 554 

differentially regulate epithelial inflammation in response to inflammatory and infectious 555 

stimuli. Mucosal Immunol. 2013;6(3): 557-68. doi:10.1038/mi.2012.98. 556 

41. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR,  Berg D et al. Genome-wide 557 

association study reveals genetic risk underlying Parkinson's disease. Nat Genet. 2009;41(12): 558 

1308-12. doi:10.1038/ng.487. 559 

42. Soller M, Weigend S, Romanov MN, Dekkers JCM,  Lamont SJ. Strategies to assess 560 

structural variation in the chicken genome and its associations with biodiversity and 561 

biological performance. Poultry Science. 2006;85(12 562 

): 2061-78. doi:10.1093/ps/85.12.2061. 563 

43. Song H, Ye S, Jiang Y, Zhang Z, Zhang Q,  Ding X. Using imputation-based whole-genome 564 

sequencing data to improve the accuracy of genomic prediction for combined populations in 565 

pigs. Genet Sel Evol. 2019;51(1): 58. doi:10.1186/s12711-019-0500-8. 566 

44. Takeuchi T, Liang SB, Matsuyoshi N, Zhou S, Miyachi Y,  Sonobe H et al. Loss of 567 

T-cadherin (CDH13, H-cadherin) expression in cutaneous squamous cell carcinoma. Lab 568 

Invest. 2002;82(8): 1023-9. doi:10.1097/01.lab.0000025391.35798.f1. 569 

45. van Leeuwen EM, Kanterakis A, Deelen P, Kattenberg MV, Slagboom PE,  de Bakker PIW 570 

et al. Population-specific genotype imputations using minimac or IMPUTE2. NATURE 571 



PROTOCOLS. 2015;10(9): 1285-96. doi:10.1038/nprot.2015.077. 572 

46. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11): 573 

4414-23. doi:10.3168/jds.2007-0980. 574 

47. Wang H, Misztal I, Aguilar I, Legarra A,  Muir WM. Genome-wide association mapping 575 

including phenotypes from relatives without genotypes. Genet Res (Camb). 2012;94(2): 576 

73-83. doi:10.1017/S0016672312000274. 577 

48. Wang H, Misztal I, Aguilar I, Legarra A, Fernando RL,  Vitezica Z et al. Genome-wide 578 

association mapping including phenotypes from relatives without genotypes in a single-step 579 

(ssGWAS) for 6-week body weight in broiler chickens. Front Genet. 2014;5(134. 580 

doi:10.3389/fgene.2014.00134. 581 

49. Wang L, Zhang Y, Zhang T, Zhang L, Yan H,  Liu X et al. Genotyping by sequencing 582 

reveals a new locus for pig teat number. Anim Genet. 2017;48(4): 470-2. 583 

doi:10.1111/age.12547. 584 

50. Wang X, Elston RC,  Zhu X. The meaning of interaction. Hum Hered. 2010;70(4): 269-77. 585 

doi:10.1159/000321967. 586 

51. Wang Z, Xu S, Du K, Huang F, Chen Z,  Zhou K et al. Evolution of digestive enzymes and 587 

RNASE1 provides insights into dietary switch of cetaceans. Mol Biol Evol. 2016;33(12): 588 

3144-57. doi:10.1093/molbev/msw191. 589 

52. Weller JI, Song JZ, Heyen DW, Lewin HA,  Ron M. A new approach to the problem of 590 

multiple comparisons in the genetic dissection of complex traits. GENETICS. 1998;150(4): 591 

1699-706. 592 



53. Wu YS, Chen YT, Bao YT, Li ZM, Zhou XJ,  He JN et al. Identification and verification of 593 

potential therapeutic target genes in Berberine-Treated zucker diabetic fatty rats through 594 

bioinformatics analysis. PLoS One. 2016;11(11): e166378. 595 

doi:10.1371/journal.pone.0166378. 596 

54. Yan G, Qiao R, Zhang F, Xin W, Xiao S,  Huang T et al. Imputation-Based Whole-Genome 597 

sequence association study rediscovered the missing QTL for lumbar number in sutai pigs. 598 

Sci Rep. 2017;7(1): 615. doi:10.1038/s41598-017-00729-0. 599 

55. Yu G, Wang LG, Han Y,  He QY. ClusterProfiler: An R package for comparing biological 600 

themes among gene clusters. OMICS. 2012;16(5): 284-7. doi:10.1089/omi.2011.0118. 601 

56. Zhang LC, Li N, Liu X, Liang J, Yan H,  Zhao KB et al. A genome-wide association study 602 

of limb bone length using a Large White x Minzhu  intercross population. Genet Sel Evol. 603 

2014;46(56. doi:10.1186/s12711-014-0056-6. 604 

57. Zhang Y, Zhang R, Ding X,  Ai K. EFNB2 acts as the target of miR-557 to facilitate cell 605 

proliferation, migration and invasion in pancreatic ductal adenocarcinoma by bioinformatics 606 

analysis and verification. Am J Transl Res. 2018;10(11): 3514-28. 607 

 608 

  609 



Figures 610 

Figure 1. Manhattan plot of the genome-wide association study on three body 611 

size traits by using single-trait model ssGWAS. BL, Body length; BH, Body height; 612 

CBC, Cannon bone circumference. In the Manhattan plots, negative log10 P-values of 613 

the quantified SNPs were plotted against their genomic positions. The x-axis 614 

represents the chromosomes, and the y-axis represents the observed -log10(P-value). 615 

Different colors indicate various chromosomes. Each trait has a significant threshold 616 

of FDR adjusted, for (A) BL, it was 9.26 × 10
–6

. Similarly, (B) BH was 1.08 × 10
–5

, 617 

and (D) CBC was 1.02 × 10
-5

. 618 

Figure 2. Manhattan plot of the genome-wide association study on four body size 619 

traits by using two-trait model ssGWAS. 620 

AC, Abdominal circumference; CC, Chest circumference; RW, Rump width; CW, 621 

Chest width. AC and CC are a pair of traits, RW and CW are a pair of traits. 622 

In the Manhattan plots, negative log10 P-values of the quantified SNPs were plotted 623 

against their genomic positions. The x-axis represents the chromosomes, and the 624 

y-axis represents the observed -log10(P-value). Different colors indicate various 625 

chromosomes. Each trait has a significant threshold of FDR adjusted, for (A) AC, it 626 

was 9.74 × 10
–6

. Similarly, (B) CC was 1.05 × 10
–5

, (C) RW was 9.60 × 10
–6

, and (D) 627 

CW was 1.01 × 10
-5

. 628 

Figure 3. Manhattan plot of the genome-wide association study on seven body 629 

size traits and Venn plot of SNPs according to the contribution of SNP to genetic 630 

variance by using ssGWAS.  631 

BL, Body length; BH, Body height; CBC, Cannon bone circumference; AC, 632 

Abdominal circumference; CC, Chest circumference; RW, Rump width; CW, Chest 633 

width. BL, BH and CBC were single-trait models，AC, CC, RW and CW were 634 

two-trait models. AC and CC are a pair of traits, RW and CW are a pair of traits.  635 

In the Manhattan plots(A-G), the proportion of genetic variance of the quantified 636 

SNPs were plotted against their genomic positions. The x-axis represents the 637 

chromosomes, and the y-axis represents the percentage of SNP explaining the genetic 638 

variance. Different colors indicate different chromosomes.  639 

Venn plot(H) of SNPs for the two pairs of body size traits, AC and CC, RW and CW 640 

are a pair of traits, respectively. 641 



Tables 642 

Table 1 Descriptive statistics for body weight and seven body size traits 643 

Trait
1
 N-obs

2
 Mean S.D. CV(%) Min value Max value 

BL(cm) 5573 108.89 6.18 5.67 88 134 

BH(cm) 5573 62.87 2.92 4.64 51 75 

CC(cm) 5573 104.58 5.75 5.50 85 126 

AC(cm) 4898 113.52 6.31 5.56 94 137 

CW(cm) 5572 29.75 2.31 7.76 19 38 

RW(cm) 5573 31.64 2.13 6.73 22 40 

CBC(cm) 5573 17.98 1.03 5.73 13 23 

BW(kg) 5573 101.31 12.59 12.43 61 150 

Note: 
1
BL=body length, BH= body height, CC=chest circumference, AC=abdominal 644 

circumference, CBC= cannon bone circumference, RW= rump width, CW=chest 645 

width，2
N-obs = number of observations 646 

Table 2 Genetic correlations between seven body size traits 647 

Trait
1
 BL BH CC AC CW RW CBC 

BL  -0.010(0.088) 0.033(0.092) -0.014(0.092) 0.014(0.078) -0.286(0.078) 0.206(0.078) 

BH   0.171(0.104) 0.071(0.106) -0.221(0.091) -0.217(0.090) -0.105(0.096) 

CC    0.747(0.055) 0.255(0.093) 0.127(0.095) 0.197(0.096) 

AC     0.153(0.096) 0.204(0.095) 0.202(0.096) 

CW      0.840(0.028) 0.015(0.086) 

RW       -0.032(0.085) 

CBC        

Note: 
1
BL=body length, BH= body height, CC=chest circumference, AC=abdominal 648 

circumference, CBC= cannon bone circumference, RW= rump width, CW=chest 649 

width, SE of estimates are in parentheses 650 



Table 3. Significant SNPs and associated genes for seven body size traits 651 

Trait1 
Chrom

osome 
Position (bp) P_value 

SNP effect 

(%) 
Gene Distance Gene function 

BL 6 5671575 2.35E-07 0.00186  CDH13 +13217 cadherin 13  

 1 6435744 1.5E-06 0.00017  NA  NA 

 1 6472959 1.5E-06 0.00080  PRKN +38323 parkin RBR E3 ubiquitin protein ligase  

 17 33632497 2.62E-06 
0.00289  ENSSSCG00000028

461 
-47405 signal regulatory protein alpha  

 13 25520933 4.45E-06 0.00004  ULK4 -8396 unc-51 like kinase 4  

 16 1276330 4.57E-06 0.00031  NA  NA 

 14 137476010 6.47E-06 0.00054  NA  NA 

 8 28933773 7.46E-06 0.00144  NWD2 -23316 NACHT and WD repeat domain containing 2 

 13 166328893 8.39E-06 0.00039  NA  NA 

BH 16 886074 2.84E-06 0.00817  CTNND2 +28239 alpha-2-macroglobulin like 1  

 8 7942460 3.01E-06 0.00083  NA  NA 

 3 26586077 4.62E-06 0.00117  CLEC19A -45911 C-type lectin domain containing 19A  

 5 62690928 6.5E-06 0.00004  A2ML1 -42827 alpha-2-macroglobulin like 1  

 4 128701315 7.54E-06 0.00152  NA  NA 

 14 33580513 9.85E-06 0.00060  HSPB8 +45615 heat shock protein family B (small) member 8

CBC 4 117759672 2.16E-07 0.00279  CDC14A -34935 cell division cycle 14A  

 13 182971424 1.83E-06 0.00420  TMPRSS15 -29625 transmembrane serine protease 15  

 17 12868538 1.85E-06 0.00635  PSD3 -43049 pleckstrin and Sec7 domain containing 3  

 1 1201299 2.3E-06 
0.00025  ENSSSCG00000041

157 
-47914 NA 

 1 1205821 2.3E-06 
0.00018  ENSSSCG00000050

693 
-42855 NA 

 1 1220233 2.3E-06 
0.00039  ENSSSCG00000045

916 
-18409 NA 

 1 1367723 2.3E-06 
0.00064  ENSSSCG00000043

714 
+5537 NA 

 18 21663467 0.000003 0.00400  GRM8 -14659 glutamate metabotropic receptor 8  

 14 9698552 3.19E-06 
0.00026  ENSSSCG00000049

499 
9436 NA 

 5 7020488 3.46E-06 0.00023  PMM1 -49963 phosphomannomutase 1  

 12 50490164 4.08E-06 0.00233  SPNS3 -47230 sphingolipid transporter 3 (putative)  

 3 12869355 4.1E-06 
0.00259  ENSSSCG00000036

217 
+18272 NA 

 4 10221008 5.38E-06 0.00076  ASAP1 -37722 ArfGAP with SH3 domain, ankyrin repeat and



 2 124456560 5.76E-06 0.00036  PRR16 +6055 proline rich 16  

 1 13806583 7.02E-06 
0.00142  ENSSSCG00000004

081 
-2527 NA 

 652 

Trait
1
 

Chrom

osome 
Position (bp) P_value 

SNP effect 

(%) 
Gene Distance Gene function 

AC 8 3249196 1.88E-06 0.00134  AFAP1 -46660 actin filament associated protein 1  

 9 14578071 2.31E-06 0.00128  NA  NA 

 14 13670622 2.71E-06 0.00048  PRSS55 -4581 serine protease 55  

 5 15137502 2.96E-06 0.00513  RHEBL1 -39837 RHEB like 1  

 4 5362087 4.48E-06 
0.00139  ENSSSCG0000004493

7 
+36176 NA 

 7 26363076 5.4E-06 0.00093  NA  NA 

 14 43227411 5.77E-06 
0.00024  ENSSSCG0000003338

5 
-49062 KIAA1671 ortholog  

 16 522752 6.96E-06 0.00014  CTNND2 -3796 catenin delta 2  

CC 3 63528527 1.32E-07 
0.00015  ENSSSCG0000000825

0 
-41861 catenin alpha 2  

 6 19429624 3.27E-07 0.00022  Metazoa_SRP -49801 Metazoan signal recognition particle RN

 1 3149903 7.78E-07 0.00047  PDE10A -28771 phosphodiesterase 10A  

 6 120477523 1.95E-06 0.00173  FHOD3 -40874 formin homology 2 domain containing 3 

 10 56219300 2.01E-06 0.00203  ITGB1 -46293 integrin subunit beta 1  

 17 18990746 2.63E-06 0.00004  ANKEF1 -32351 ankyrin repeat and EF-hand domain cont

 17 18997949 2.63E-06 0.00008  ANKEF1 -37701 ankyrin repeat and EF-hand domain cont

 2 122228151 3.03E-06 
0.00105  ENSSSCG0000005134

3 
-14167 NA 

 2 122235537 3.03E-06 
0.00074  ENSSSCG0000005134

3 
-21553 NA 

 16 33630686 3.58E-06 0.00018  NA  NA 

 16 33638300 3.58E-06 0.00079  NA  NA 

 16 5533970 4.64E-06 
0.00394  ENSSSCG0000001679

1 
+16579 NA 

 12 5297390 5.41E-06 0.00092  RNF157 -48707 ring finger protein 157  

 4 64552365 5.7E-06 
0.00666  ENSSSCG0000004202

9 
-24706 NA 

 10 43341283 7.22E-06 0.00064  CUBN -39687 cubilin  

 8 21799389 8.84E-06 
0.00030  ENSSSCG0000005098

4 
-18261 NA 



 10 60737384 9.42E-06 
0.00449  ENSSSCG0000001112

1 
-24200 CUGBP Elav-like family member 2 

RW 8 137165913 5.64E-07 0.00049  NA  NA 

 9 2330339 2.74E-06 0.00381  SYT9 -11533 synaptotagmin 9  

 1 38033383 4.19E-06 0.00149  NKAIN2 -12912 sodium/potassium transporting ATPas

 3 63682227 5.03E-06 0.00010  NA  NA 

 11 32555905 6.78E-06 0.00015  DIAPH3 +46764 diaphanous related formin 3  

 16 48600234 7.1E-06 
0.00118  ENSSSCG0000004608

5 
-23005 NA 

 16 48696355 7.1E-06 
0.00155  ENSSSCG0000003988

3 
+49947 NA 

 1 100210738 7.97E-06 0.00095  MAPK4 +8278 mitogen-activated protein kinase 4  

 1 100335688 7.97E-06 0.00017  MAPK4 -49706 mitogen-activated protein kinase 4  

CW 8 132277288 8.17E-07 0.00009 PTPN13 -27877 protein tyrosine phosphatase non-recept

     MAPK10 -27281 mitogen-activated protein kinase 10 

 7 115471416 9.52E-07 0.00653  PPP4R4 -18233 protein phosphatase 4 regulatory subuni

 14 37118119 1.09E-06 
0.00289  ENSSSCG0000005178

6 
-2275 NA 

 14 37165658 1.09E-06 
0.00051  ENSSSCG0000005178

6 
-49874 NA 

 14 37230969 1.09E-06 
0.00039  ENSSSCG0000005178

6 
-9755 NA 

 2 80016213 2.07E-06 0.00192  COL23A1 -46865 collagen type XXIII alpha 1 chain  

 14 139878474 2.34E-06 0.00437  TCERG1L -46513 transcription elongation regulator 1 l

 12 49725382 2.67E-06 0.00112  TRPV1 -33424 transient receptor potential cation channel

 16 35012960 3.46E-06 0.00029  DDX4 -46102 DEAD-box helicase 4  

 7 115132809 4.65E-06 
0.00069  ENSSSCG0000000246

4 
-31787 proline rich membrane anchor 1  

 16 73800572 4.82E-06 0.00153  U6 +41611 U6 spliceosomal RNA  

 16 73812833 4.82E-06 0.00172  U6 +29350 U6 spliceosomal RNA  

 16 73816240 4.82E-06 0.00175  U6 +25343 U6 spliceosomal RNA  

 9 107845695 5.74E-06 
0.00014  ENSSSCG0000003290

5 
-7136 NA 

 8 76456715 6.42E-06 
0.00057  ENSSSCG0000004227

3 
-45304 NA 

 3 131731345 6.59E-06 
0.00001  ENSSSCG0000004975

1 
-23407 NA 

 3 131738702 6.59E-06 0.00016  ENSSSCG0000004975 -30764 NA 



1 

 3 131744661 6.59E-06 
0.00016  ENSSSCG0000004975

1 
-36723 NA 

 3 131756951 6.59E-06 
0.00025  ENSSSCG0000004975

1 
-43896 NA 

 3 131758601 6.59E-06 
0.00024  ENSSSCG0000004975

1 
-45546 NA 

 5 61521505 7.76E-06 
0.00033  ENSSSCG0000003340

3 
-14845 C-type lectin domain family 7 member

 16 67601687 8.2E-06 
0.00052  ENSSSCG0000004922

9 
-42425 NA 

 7 92897102 4.65E-06 0.00109  HMGA1 +25885 high mobility group AT-hook 1 

 15 11796106 9.96E-06 0.00074  NA  NA 

Note: 
1
BL=body length, BH= body height, CC=chest circumference, AC=abdominal 653 

circumference, CBC= cannon bone circumference, RW= rump width, CW=chest 654 

width, gene effect= proportion of genetic variance explained 655 

Table 4 Overview of ssGWAS location for the percentage that explains the 656 

proportion of genetic variance 657 

Trait1 20 SNPs distributions of 

maximum effect 

SNPs of the maximum 

effect 

Top 20 

SNPs 

effect (%) 

Number 

of 

nearest 

gene 

Candidate 

gene 

BL SSC17 17_7477978 0.117 4  

BH SSC2、SSC5、SSC16 2_46827557 0.08.7 8 SIL1 

CBC SSC7、SSC4 7_55099416 0.101 17 TRAPPC9 

AC SSC12 12_53181656 0.128. 8 KDM6B 

CHD3 

CC SSC12 12_53169477 0.129 8 KDM6B 

CHD3 

RW SSC6、SSC7、SSC12、

SSC13、SSC17 

17_13172524 0.099 15 MUC13 

CW SSC6、SSC7、SSC13、

SSC17 

6_39554872 0.070 28 MUC13 

Note: 
1
BL=body length, BH= body height, CC=chest circumference, AC=abdominal 658 

circumference, CBC= cannon bone circumference, RW= rump width, CW=chest 659 

width, gene effect= proportion of genetic variance explained 660 

 661 
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Figures

Figure 1

Manhattan plot of the genome-wide association study on three body size traits by using single-trait
model ssGWAS. BL, Body length; BH, Body height; CBC, Cannon bone circumference. In the Manhattan
plots, negative log10 P-values of the quanti�ed SNPs were plotted against their genomic positions. The x-
axis represents the chromosomes, and the y-axis represents the observed -log10(P-value). Different colors
indicate various chromosomes. Each trait has a signi�cant threshold of FDR adjusted, for (A) BL, it was
9.26 × 10–6. Similarly, (B) BH was 1.08 × 10–5, and (D) CBC was 1.02 × 10-5.



Figure 2

Manhattan plot of the genome-wide association study on four body size traits by using two-trait model
ssGWAS. AC, Abdominal circumference; CC, Chest circumference; RW, Rump width; CW, Chest width. AC
and CC are a pair of traits, RW and CW are a pair of traits. In the Manhattan plots, negative log10 P-values
of the quanti�ed SNPs were plotted against their genomic positions. The x-axis represents the
chromosomes, and the y-axis represents the observed -log10(P-value). Different colors indicate various
chromosomes. Each trait has a signi�cant threshold of FDR adjusted, for (A) AC, it was 9.74 × 10–6.
Similarly, (B) CC was 1.05 × 10–5, (C) RW was 9.60 × 10–6, and (D) CW was 1.01 × 10-5.



Figure 3

Manhattan plot of the genome-wide association study on seven body size traits and Venn plot of SNPs
according to the contribution of SNP to genetic variance by using ssGWAS. BL, Body length; BH, Body
height; CBC, Cannon bone circumference; AC, Abdominal circumference; CC, Chest circumference; RW,
Rump width; CW, Chest width. BL, BH and CBC were single-trait models฀AC, CC, RW and CW were two-trait
models. AC and CC are a pair of traits, RW and CW are a pair of traits. In the Manhattan plots(A-G), the



proportion of genetic variance of the quanti�ed SNPs were plotted against their genomic positions. The x-
axis represents the chromosomes, and the y-axis represents the percentage of SNP explaining the genetic
variance. Different colors indicate different chromosomes. Venn plot(H) of SNPs for the two pairs of body
size traits, AC and CC, RW and CW are a pair of traits, respectively.
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