1. Zhu, J. & Thompson, C. B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019).
2. Cooper GM. The Cell: A Molecular Approach. (Sinauer Associates, 2000).
3. Chubukov, V., Gerosa, L., Kochanowski, K. & Sauer, U. Coordination of microbial metabolism. Nat. Rev. Microbiol. 12, 327–340 (2014).
4. Fani, R. The Origin and Evolution of Metabolic Pathways: Why and How did Primordial Cells Construct Metabolic Routes? Evol. Educ. Outreach 5, 367–381 (2012).
5. De la Fuente, I. M. Elements of the cellular metabolic structure. Front. Mol. Biosci. 2, (2015).
6. Zhang, Y. H. P. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 29, 715–725 (2011).
7. Alber, B. E. & Fuchs, G. Propionyl-coenzyme a synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Biol. Chem. 277, 12137–12143 (2002).
8. Jordan, P. A., Tang, Y., Bradbury, A. J., Thomson, A. J. & Guest, J. R. Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB). Biochem. J. 344, 739–46 (1999).
9. Yang, H. L. & Kessler, D. P. Genetic analysis of the leucine region in Escherichia coli B/r: gene enzyme assignments. J. Bacteriol. 117, 63–72 (1974).
10. Wang, J. et al. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction. Metab. Eng. 45, 1–10 (2018).
11. Okamoto, S. et al. Production of itaconic acid using metabolically engineered escherichia coli. J. Gen. Appl. Microbiol. 60, 191–197 (2014).
12. Werpy, T, Petersen, G. Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas. (2004). doi:10.2172/15008859
13. Tevž, G., Benčina, M. & Legiša, M. Enhancing itaconic acid production by Aspergillus terreus. Appl. Microbiol. Biotechnol. 87, 1657–1664 (2010).
14. Noh, M. H., Lim, H. G., Woo, S. H., Song, J. & Jung, G. Y. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W. Biotechnol. Bioeng. 115, 729–738 (2018).
15. Chen, A. H. & Silver, P. A. Designing biological compartmentalization. Trends Cell Biol. 22, 662–670 (2012).
16. Hammer, S. K. & Avalos, J. L. Harnessing yeast organelles for metabolic engineering. Nat. Chem. Biol. 13, 823–832 (2017).
17. van der Straat, L. et al. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb. Cell Fact. 13, 1–9 (2014).
18. Brock, M., Maerker, C., Schütz, A., Völker, U. & Buckel, W. Oxidation of propionate to pyruvate in Escherichia coli: Involvement of methylcitrate dehydratase and aconitase. Eur. J. Biochem. 269, 6184–94 (2002).
19. Rix, G. et al. Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities. Nat. Commun. 11, 1–11 (2020).
20. Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 3, 687–705 (2019).
21. Yeom, S. J. et al. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9, 1–12 (2018).
22. Williams, C. H. et al. E . coli aconitase B structure reveals a HEAT-like domain with implications for protein – protein recognition. 4, 447–452 (2002).
23. Hanko, E. K. R., Minton, N. P. & Malys, N. A Transcription Factor-Based Biosensor for Detection of Itaconic Acid. ACS Synth. Biol. 7, 1436–1446 (2018).
24. Yang, J. et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat. Commun. 4, (2013).
25. Seok, J. Y. et al. Directed evolution of the 3-hydroxypropionic acid production pathway by engineering aldehyde dehydrogenase using a synthetic selection device. Metab. Eng. 47, 113–120 (2018).
26. Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig, Ilya N. Shindyalov, P. E. B. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
27. JY Seok, YH Han, J Yang, J Yang, HG Lim, SG Kim, SW Seo, G. J. Synthetic Biosensor Accelerates Evolution by Rewiring Carbon Metabolism toward Specific Metabolite. Cell Rep. (2021).
28. Jo, M. et al. Precise tuning of the glyoxylate cycle in Escherichia coli for efficient tyrosine production from acetate. Microb. Cell Fact. 18, 1–9 (2019).
29. Yao, J. et al. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nat. Commun. 11, (2020).
30. Kang, C. W. et al. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metab. Eng. 48, 121–128 (2018).
31. Noh, M. H., Lim, H. G., Park, S., Seo, S. W. & Jung, G. Y. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metab. Eng. 43, 1–8 (2017).
32. Kulagina, N., Besseau, S., Papon, N. & Courdavault, V. Peroxisomes: A New Hub for Metabolic Engineering in Yeast. Front. Bioeng. Biotechnol. 9, 7–12 (2021).
33. Cameron, J. C., Wilson, S. C., Bernstein, S. L. & Kerfeld, C. A. Biogenesis of a bacterial organelle: The carboxysome assembly pathway. Cell 155, 1131 (2013).
34. Liu, L. N. Bacterial metabolosomes: new insights into their structure and bioengineering. Microb. Biotechnol. 14, 88–93 (2021).
35. Otten, A., Brocker, M. & Bott, M. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab. Eng. 30, 156–165 (2015).
36. Zambanini, T. et al. Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnol. Biofuels 10, 1–15 (2017).
37. Flachbart, L. K., Sokolowsky, S. & Marienhagen, J. Displaced by Deceivers: Prevention of Biosensor Cross-Talk Is Pivotal for Successful Biosensor-Based High-Throughput Screening Campaigns. ACS Synth. Biol. 8, 1847–1857 (2019).
38. Noh, M. H., Cha, S., Kim, M. & Jung, G. Y. Recent Advances in Microbial Cell Growth Regulation Strategies for Metabolic Engineering. Biotechnol. Bioprocess Eng. 25, 810–828 (2020).
39. Nguyen, N. H., Kim, J. R. & Park, S. Application of Transcription Factor-based 3-Hydroxypropionic Acid Biosensor. Biotechnol. Bioprocess Eng. 23, 564–572 (2018).
40. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97, 6640–5 (2000).
41. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
42. Seo, S. W. et al. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng. 15, 67–74 (2013).
43. Ko, Y. et al. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol. J. 9, 1526–1535 (2014).
44. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, (2011).
45. Pettersen, E. F. et al. UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).