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Abstract
Purpose To evaluate a new radiomics strategy that incorporates peritumoral and intratumoral features
extracted from lung CT images with ensemble learning for pretreatment prediction of lung squamous cell
carcinoma (LUSC) and lung adenocarcinoma (LUAD).

Methods A total of 105 patients (47 LUSC and 58 LUAD) with pretherapy CT scans were involved in this
retrospective study and were divided into training (n=73) and testing (n=32) cohorts. Seven categories of
radiomics features involving 3078 metrics in total, were extracted from the intra- and peritumoral regions
of each patient’s CT data. Student’s t-tests in combination with three feature selection methods were
adopted for optimal features selection. An ensemble classifier that was generated with five machine
learning classifiers and optimal features, was developed and the performance was quantitatively
evaluated using both training and testing cohorts for the prediction task.

Results The classification models developed by using optimal feature subsets determined from
intratumoral region and peritumoral region with the ensemble classifier achieved mean area under the
curve (AUC) of 0.87, 0.83 in the training cohort and 0.66, 0.60 in the testing cohort, respectively. The
model developed by using the optimal feature subset selected from both intra- and peritumoral regions
with the ensemble classifier achieved great performance improvement, with AUC of 0.87 and 0.78 in both
cohorts, respectively.

Conclusions The proposed new radiomics strategy that extracts image features from the intra- and
peritumoral regions with ensemble learning, could greatly improve the diagnostic performance for the
histological subtype stratification in patients with NSCLC.

1. Introduction
Lung cancer is the most frequently occurring cancer and the leading cause of cancer-related death in men
globally [1]. In women, lung cancer is the third most commonly diagnosed cancer and the second most
leading cause of cancer-related death [1]. Approximately 85% of primary lung malignancies are nonsmall-
cell lung cancer (NSCLC), and the 5-year survival rate is less than 20% [2–6].

Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are two major histological
subtypes of NSCLC that constitute approximately 35% and 60% of primary NSCLC cases, respectively [2,
3, 5, 7–9]. LUSC often shows keratinization, pearl formation, and intercellular bridges, whereas LUAD may
exhibit lepidic, glandular, papillary or micropapillary, or solid architecture [2]. These two histological
subtypes always present different anatomical sites and glucose metabolism levels, reflect the need for
different optimal treatments to improve clinical outcomes [3, 6–8]. Therefore, accurately predicting LUSC
and LUAD is of paramount importance prior to clinical interventions [6].

The first-line reference in preoperatively diagnosing LUSC and LUAD is lung biopsy [3, 6–8, 10], which is
an invasive diagnostic approach with a high level of risks in clinical practice [11]. In addition, concerning
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the issue of tumor heterogeneity of NSCLC, lung biopsy examines only very limited proportions of the
tumor tissue and is incapable of completely characterizing tumor properties [5, 7]. Developing a
noninvasive strategy for the accurate prediction of LUSC and LUAD preoperatively is desirable.

Noninvasive imaging technologies, such as computed tomography (CT) and multiparametric magnetic
resonance imaging (mpMRI), have recently been widely used for the pretherapy diagnosis of NSCLC [5, 7,
12–15]. Compared with mpMRI, CT offers considerably better imaging efficiency, higher resolution, and
fewer motion artifacts caused by breathing and is thus recommended in the guidelines for NSCLC
screening and diagnosis [2, 13]. However, it is very challenging for clinicians to visually predict the
histological subtype of NSCLC directly from CT images to discriminate between LUSC and LUAD.

In recent years, radiomics strategies have been used for the prediction of LUSC and LUAD. In 2016, Wu et
al. explored a CT-based radiomics strategy with 440 features extracted, and the Naïve Baye’s classifier
was used and achieved fair performance for the differentiation of LUSC and LUAD with an area under the
curve (AUC) of the receiver operating characteristic (ROC) curve of 0.72 [16]. Bashir et al. extracted 115
radiomics features from CT data and developed a prediction model based on the optimal features and
random forest (RF) classifier, achieving an AUC of 0.82 for discriminating between LUSC and LUAD [2].
Chaunzwa et al. introduced the convolutional neural network (CNN) to the prediction task and developed
a prediction model based on the Visual Geometry Group-16 (VGG-16) network [17], obtaining an optimal
AUC of 0.751.

In addition, some recent studies also integrated the radiomics strategy with positron emission
tomography computed tomography (PET-CT) images, achieving favorable diagnostic performance in the
differentiation of these two subtypes of NSCLC [18–20]. For instance, Koyasu et al. proposed a PET-CT-
based radiomics strategy with an extreme gradient boosting (XGBoost) classifier for the prediction task
[19], achieving good performance with an AUC of 0.843.

Although these previous studies have repeatedly demonstrated the feasibility of the radiomics strategy
based on CT or PET-CT for the prediction of histological subtypes of NSCLC, all the features they
extracted were from the intratumoral region of the image. We are not aware of any work that has
attempted to evaluate the peritumoral area outside the tumor to distinguish LUSC from LUAD. According
to a recent study [21], perinodular region-based radiomics features on lung CT images effectively reflect
the difference between LUAD and granulomas and accurately distinguish these two types of lung
nodules. Whether the radiomics features extracted from the peritumoral region of NSCLC can reflect the
significant difference between LUSC and LUAD and further be used for the prediction task remains an
open question to date.

Therefore, the first aim of this study was to investigate whether the radiomics features extracted from the
peritumoral region of NSCLC could significantly reflect the difference between LUSC and LUAD. To
achieve this goal, seven feature categories were employed in this study, including morphological features,
histogram-based features (first-order features, hereafter), Haralick features of co-occurrence matrices (CM
features, hereafter) [22], and features derived from the run length matrix (RLM features, hereafter) [23], the
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neighborhood gray-tone difference matrix (NGTDM features, hereafter) [24], the gray level size zone
matrix (GLSZM features, hereafter) [25], and gray level dependence matrix (GLDM features, hereafter) [26]
to fully characterize the global, local and regional differences of the tissue in the peritumoral region
between LUSC and LUAD [27].

The second aim was to develop an accurate and consistent model for predicting LUSC and LUAD. To
fulfil this aim, both intra- and peritumoral region-based radiomics features were utilized, and an ensemble
classifier that combined multiple binary classifiers, such as support vector machine (SVM), RF and
XGBoost, was used to form a more robust predictive model. The diagnostic performance of the model
was then assessed with AUC for the differentiation of LUSC and LUAD.

2. Materials And Methods
This retrospective study was approved by the institutional ethics review board of Xijing Hospital, and
informed content was waived. The overall methodological pipeline of this study is shown in Fig. 1.

2.1 Patients
A total of 146 archival patients with postoperatively confirmed NSCLC were collected from Xijing
Hospital. The inclusion criteria were as follows: i) primary LUSC or LUAD was pathologically confirmed; ii)
CT scan was performed prior to any therapies. Patients who met one of the following conditions were
excluded: i) lack of postoperative pathological information to confirm the histopathological subtype of
the patient as LUSC or LUAD (n=21); ii) missing preoperative CT scan (n=16); or iii) poor imaging quality
makes accurate tumor annotations extremely difficult (n=4). Finally, 105 subjects were eligible for this
study, including 47 patients with LUSC and 58 patients with LUAD. The patients were then randomly
allocated into the training cohort (n=73) and testing cohort (n=32). The inclusion-exclusion process is
illustrated in Fig. 2.

2.2 Image acquisition and region of interest annotation
All patients underwent thoracic CT imaging using a uCT 760 system (United Imaging Healthcare, China).
The primary scanning parameters were as follows: 80 kV; 80 mAs; detector collimation: 64 × 0.6 mm;
rotation time: 0.4 s; slice thickness: 5 mm; spacing between slices:5 mm; pixel spacing: 0.6 × 0.6 mm; and
matrix size, 512 × 512. The entire lung region was scanned in each patient, and the image slice varied
from 100 to 400.

Two types of regions of interest (ROIs) including intra- and peritumoral regions, were annotated from the
CT images, as shown in Fig. 3. Prior to the intratumoral region annotation of each CT dataset, the axial
image slice was selected to obtain the largest area of the archived tumor with the maximal size in each
patient’s lung region. Then, a manually depicted polygonal ROI was used to segment the intratumor
region on the selected image slice. Two radiologists with 20 and 10 years of lung CT interpretation



Page 5/22

experience independently performed intratumoral region delineation using a custom-developed package.
Then, divergence of their delineation results was carefully corrected by consensus.

After the intratumoral region mask was obtained, we adopted the morphological dilation operator to
generate a new region mask that was approximately 10 mm larger in radial distance than the
intratumoral region according to pixel size [21]. Then, the corresponding peritumoral region was the ring
of the lung parenchyma around the tumor that was obtained by subtracting the intratumoral region mask
from the new region mask after morphological expansion, as shown in Fig. 3. Finally, the peritumoral
region was further divided into two rings including the first ring (0-5 mm) and the second ring (5-10 mm)
for feature extraction and comparison [21].

2.3 Radiomics feature extraction
After intra- and peritumoral ROI segmentation, 10 filters including wavelet-HL, wavelet-LL, wavelet-LH,
wavelet-HH, square, square root, logarithm, exponential, gradient, and local binary pattern (LBP), were
utilized to the original image to magnify the tissue patterns and unearth important features. Then, six
feature categories, including first-order features, GLCM features, GLRLM features, NGTDM features,
GLSZM features and GLDM, were calculated from the original segmented image data and 10 generated
images of the intratumoral and two rings of the peritumoral regions [28]. Given that the peritumoral
region was dilated based on use of the intratumoral region, the shape 2D features were only calculated
from the intratumoral region. Therefore, 1032, 1023, 1023 radiomics features were extracted from the
intratumoral region and the first ring and the second ring of the peritumoral region, respectively, as shown
in Table 1. Open source Pyradiomics (version 3.0.1) was used to perform this analysis [29]. All of the
codes and results have been attached in the Appendix document.
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Table 1
The demographics and clinical data of eligible patients

Characteristics Training cohort

(n = 73)

Testing cohort

(n = 32)

p-value

Age, years     0.87 a

Median (Range) 61 [35, 76] 59 [39, 83]  

Sex, No. (%)     0.91 b

Male 54 / 73 (73.97%) 24 / 32 (75.00%)  

Female 19 / 73 (26.03%) 8 / 32 (25.00%)  

Smoking, No. (%)      

Yes 49 / 73 (67.12%) 20 / 32 (62.50%) 0.65 b

No 24 / 73 (32.88%) 12 / 32 (37.50%)  

Side, No. (%)     0.90 b

Upper left lobe 22 / 73 (30.14%) 10 / 32 (31.25%)_  

Lower left lobe 12 / 73 (16.44%) 4 / 32 (12.50%)  

Upper right lobe 20 / 73 (27.40%) 7 / 32 (21.88%)  

Middle right lobe 2 / 73 ( 2.74%) 1 / 32 (3.13%)  

Lower right lobe 17 / 73 (23.29%) 10 / 32 (31.25%)  

Histopathological subtype, No. (%)     0.89 b

Squamous cell carcinoma (LUSC) 33 / 73(45.21%) 14 / 32(43.75%)  

Adenocarcinoma (LUAD) 40 / 73(54.79%) 18 /32(56.25%)  

a: Student's t-test

b: Chi square test

2.4 Feature selection
In this study, a two-step feature selection strategy was adopted to determine an optimal subset of
features for model construction, as shown in Fig. 1. The first step was statistical analysis of all these
features between LUSC and LUAD, which was performed with Scikit-learn. Student’s t-test with a
significant p-value set as 0.05 was then performed with all radiomics features to select those with
significant intergroup differences between LUSC and LUAD [30].
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Then, all significant features were standardized to eradicate differences of the feature-value scales. The
normalized feature  of each feature  for a specific patient is calculated as follows:

   (1)
where  and  are the mean and standard deviation, respectively, of each feature from the training
cohort.

In the second step of feature selection, three widely-used feature selection algorithms, including the
minimum redundancy maximum relevance method (mRMR) [31], the least absolute shrinkage and
selection operator(LASSO) [32, 33], and the linear SVM-based recursive feature elimination (SVM-RFE)
[34], were further implemented with these significant features to select an optimal feature subset from the
training cohort for model development and external testing.

2.5 Model development based on ensemble learning and
validation
With optimal features selected, the predictive model was developed using the training cohort and the
ensemble learning strategy, which includes five commonly used binary classifiers, including the quadratic
discriminant analysis(QDA) classifier, SVM with radial basis function(RBF) kernel, SVM with
sigmoid/tanh kernel, RF, and XGBoost. QDA is the most commonly used binary classifier, which has no
same-covariance assumption for each binary class [35, 36]. SVM is a classical machine learning
classifier with several typical kernels, such as RBF and sigmoid/tanh, that is used to compute the
decision boundary that separates two classes with the maximum marginal distance [37–39]. It has
advantages in dealing with nonlinear features and is not easily overfit with even small datasets [40]. The
RF classifier can build multiple random decision trees (100 trees of the default parameter in Scikit-learn to
avoid overfitting) and integrate them to make an accurate diagnosis [40–42]. XGBoost offers many
benefits in classification, including high precision and consistency and the prevention of overfitting [43,
44]; thus, it was also included in the ensemble learning strategy.

The ensemble classifier was finally developed by weighting the predictive value of these five classifiers in
the model training process, which can be expressed as follows:

  (2)
where  represents the final predictive value of the j-th patient;  denotes the predictive value of
the j-th patient by using the i-th classifier; and  is the weighting parameter of the i-th classifier in the
ensemble learning process, which meets the following condition:

z x

¯̄x̄ σ

P(j) pi(j)

ωi
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  (3)
In this study, the optimal weight  was determined based on minimizing the predictive error in the
training process, and the cutoff  for assigning the patient to the LUAD group was set as 0.5. If 
was greater than or equal to 0.5, the j-th patient was allocated to the LUAD group. The overall
performance was evaluated using both the training cohort and the testing cohort with the quantitative
metric of AUC [45–48]. The AUC value was widely used to comprehensively evaluate the general
performance of the model developed for the prediction task [45–48].

2.6 Statistical analysis
Statistical analyses of the patient demographics were performed using IBM SPSS statistics (version 19.0,
Armonk, NY), and Python software (version 3.6 DL-GPU) was used to perform statistical selection of
features with significant differences between LUSC and LUAD. Chi square tests were performed to
evaluate significant differences in primary clinical factors distributed between the training and testing
cohorts, and Student’s t-tests were used to select significant radiomics features between LUSC and LUAD.
Two-sided p-values less than 0.05 were considered significant [27, 49, 50].

3. Results

3.1 Demographics of eligible patients
A total of 105 NSCLC patients were eligible for this study, including 47 patients with LUSC and 58 with
LUAD. These patients were randomly allocated into the training cohort (n=73) and the testing cohort
(n=32). The baseline demographics and clinical information of these patients was collected from the
archival medical document, as shown in Table 1. Statistical analyses indicate no significant differences
between both the training and testing cohorts in terms of all these primary factors.

3.2 Results of the two-step feature selection strategy
A total of 3078 standardized radiomics features, including 1032 features from the intratumoral region,
1023 from the first ring (0-5 mm) and 1023 from the second ring (5-10 mm) of peritumoral regions, were
analyzed using Student’s t-test (p-value < 0.05) to determine those with significant intergroup differences
between LUSC and LUAD. Eventually, 500 significant features were selected from the intratumoral region,
whereas, only 220 and 119 significant features were selected from the first ring and second ring of
peritumoral regions, respectively, as shown in Fig. 4. These results indicate that i) a large number of
radiomics features extracted from the peritumoral region can also reflect the significant differences in
tissue distribution patterns between LUSC and LUAD; ii) the closer the peritumoral region is located to the
intratumoral region, the more features with significant differences could be obtained to reflect the tumor
property difference. Fig. 5 illustrates an example of the intra- and peritumoral tissue distribution
differences of LUSC and LUAD determined using one of the significant radiomics features, energy, with
3×3 sliding patches on the CT image.

ωi

P(j) P(j)
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After statistical analysis-based feature selection, three radiomics feature subsets were finally obtained,
including i) 500 significant features from the intratumoral region, ii) 339 significant features from the
entire peritumoral region, and iii) 839 significant features from both intratumoral and peritumoral regions.
All these significant features in each feature subset were further selected using three commonly applied
strategies: SVM-RFE, LASSO, and mRMR with the mutual information difference (MID), as shown in Figs.
6 - 8. Table 2 shows the results after the second-step feature selection procedure.

Table 2
Results after using the second-step feature selection strategy

Method Optimal features selected
from 500 significant
features of the
intratumoral region

Optimal features selected
from 339 significant
features of the
peritumoral region

Optimal features selected from
839 significant features of
both intra- and peritumoral
regions

SVM-
RFE

12 6 9

LASSO 6 6 8

mRMR
with
MID

12 12 12

3.3 Classification model development and performance
evaluation
As these optimal feature subsets were determined, classification models were developed using five
commonly used machine learning classifiers and the ensemble classifier with the training cohort, and the
performance of each model was evaluated by using both training and testing cohorts for distinguishing
LUSC from LUAD. The results are presented in Fig. 9. Three columns of subfigures in Fig. 9 exhibit the
performance of predictive models developed by using optimal feature subsets determined from the
intratumoral region, peritumoral region, and both intra- and peritumoral regions. These findings indicate
that i) the classification model determined from the peritumoral region achieved comparable
performance to that from the intratumoral region; ii) the classification model determined from intra- and
peritumoral regions dramatically improved the overall performance for the prediction of LUSC and LUAD;
and 3) the model developed by the ensemble classifier achieved more favorable and consistent
performance with training and testing cohorts compared with those developed by five independent
classifiers. Table 3 shows the performance of classification models developed by the ensemble classifier
for the prediction task, indicating that the ensemble classification model developed by SVM-RFE-based
optimal features determined from intra- and peritumoral regions achieved the best performance with AUC
values of 0.87 and 0.78 in the training and testing cohorts, respectively.
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Table 3
Performance of classification models developed by the ensemble classifier for the prediction of LUSC

and LUAD with training and testing cohorts
Method Classifier From the

intratumoral region
From the
peritumoral region

From intra- &
peritumoral regions

Training Testing Training Testing Training Testing

SVM-RFE Ensemble 0.87 0.66 0.83 0.60 0.87 0.78

LASSO Ensemble 0.76 0.63 0.73 0.63 0.79 0.68

mRMR with
MID

Ensemble 0.77 0.68 0.64 0.56 0.73 0.71

# The AUC value with bold ranks as the top place in each column.

4. Discussion
In this study, we investigated the feasibility of CT-based radiomic features extracted from intra- and
peritumoral regions of NSCLC to reflect the tissue distribution differences between LUSC and LUAD, and
developed a CT-based radiomics strategy that incorporated high-throughput features with an ensemble
classifier for the preoperative prediction of LUSC and LUAD. Three widely used methods, SVM-RFE,
LASSO, and mRMR, were employed to select optimal features with significant intergroup differences
between LUSC and LUAD for classification model development. Five independent classifiers, QDA, SVM
with RBF kernel, SVM with sigmoid/tanh kernel, RF, and XGBoost, which were reported to have favorable
classification performance and robustness for the diagnosis of cancer phenotypes with a small
database, were utilized to form an ensemble classifier for classification model building. The results of the
model that was developed using the ensemble classifier and optimal features selected by SVM-RFE from
intra- and peritumoral regions demonstrate favorable discriminative power with both the training and
testing cohorts.

In recent years, CT-/PET-CT/multimodal MRI-based radiomics strategies have been repeatedly
demonstrated to have great capability for the prediction of LUSC and LUAD [2, 9, 16, 18–20]. The
diagnostic performance ranged between 0.72 and 0.843. Nevertheless, all these previous studies only
focused on how to extract an increasing number of features from the intratumoral region of the image,
regardless of the peritumoral parenchyma, which might also contain substantial information and be of
equal importance for the prediction task. Some studies have revealed that the interface of the tumor has
a “rim” of densely packed tumor-infiltrating lymphocytes and tumor-associated macrophages in
representative hematoxylin and eosin–stained images [8, 21, 51, 52]. At a macroscopic scale, the densely
packed stromal tumor-infiltrating lymphocytes around LUAD represent fine and smooth textures on CT
images and thus could be potential imaging biomarkers for the identification of LUAD from LUSC [21].
However, whether radiomics features extracted from the peritumoral parenchyma region effectively reflect
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the intergroup difference of the tissue and microenvironment between LUSC and LUAD, remains unknown
to date.

In this study, we found that a large number of radiomics features extracted from the intratumoral region
and peritumoral region were significantly different between LUSC and LUAD, and the total number of
significant features extracted from the first ring (0-5 mm) peritumoral region was much greater than that
of the significant features extracted from the second ring (5-10 mm) peritumoral region. These results
demonstrate and verify for the first time the hypothesis that the peritumoral region on CT images also
contains substantial information that can reflect the tissue texture difference between LUSC and LUAD. In
addition, the closer the peritumoral region is to the intratumoral region, the more substantial the
information it contains.

Most of the previous studies only focused on extracting features from the original image data, neglecting
the image filters that not only reduce the noise but also enhance the quality and magnify the texture in
the image [53, 54]. Therefore, in this study, 10 filters including wavelet-HL, wavelet-LL, wavelet-LH,
wavelet-HH, square, square root, logarithm, exponential, gradient, and LBP were utilized to preprocess the
image for feature extraction. Seven categories of radiomics features, including morphological features,
first-order features, second-order features, and high-order texture features, were adopted in this study to
fully characterize the shape properties and global, local and regional distribution patterns of the tissue,
respectively. Student’s t-tests integrated with three widely applied feature selection algorithms (SVM-RFE,
LASSO and mRMR), were adopted for optimal feature selection and performance comparison. The
results indicate that the optimal features selected using the SVM-RFE algorithm from all significant
features of both intra- and peritumoral regions have the most powerful diagnostic ability for the
discrimination between LUSC and LUAD.

Classification model development is the last but most crucial step in the proposed radiomics strategy for
the prediction of LUSC and LUAD. In this step, the choice of an optimal decision classifier, for instance,
SVM with RBF kernel or Sigmiod kernel, RF, QDA, or XGBoost represent the core influence of performance
variation [40]. Hence, the determination of an optimal classifier is of critical importance. To fully integrate
all the merits of these five independent classifiers, an ensemble classifier was generated using five
independent classifiers, SVM with RBF kernel, or sigmoid kernel, RF, QDA, and XGBoost, and its diagnostic
performance was compared with these independent classifiers. The results indicate that i) the
classification model developed using the ensemble classifier achieves the most favorable, consistent and
robust diagnostic performance compared with other independent classifiers, and ii) optimal features
determined by SVM-RFE from both intra- and peritumoral regions with the ensemble classifier achieve the
best diagnostic performance for the prediction of LUSC and LUAD with both training and testing cohorts.
In addition, the classification results of all these models developed by each classifier with optimal
features determined from intratumoral, peritumoral, or both of intratumoral and peritumoral regions using
SVM-RFE, LASSO, and mRMR also revealed that although the model based on the ensemble classifier did
not always obtain the best results, it always ranked as one of the top two models in terms of the AUC with
both cohorts, suggesting remarkable consistency and robustness in the prediction of LUSC and LUAD.
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The limitations of this study include the following aspects. First, inherent bias might exist given the
retrospective nature of the present study with relatively small patient cohorts collected from a single
clinical center. A larger number of participants from two or more clinical centers are further required to
validate the performance of the model we developed. Moreover, other potential clinical factors, such as
gene mutations and key molecular biomarkers, were not included in the current study given the
incomplete data in the archival database, which should be further analyzed. In addition, deep radiomics
features incorporating the current manual radiomics features might further improve current performance
in the prediction of LUSC and LUAD.

In conclusion, the proposed CT-based radiomics strategy that extracts features from intra- and
peritumoral regions, adopts SVM-RFE for optimal feature selection, and utilizes ensemble learning for
classification model development is demonstrated with favorable predictive precision and stability for
preoperatively prediction of LUSC and LUAD.
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Figure 1

The schematic pipeline of the proposed strategy for the prediction of lung squamous cell carcinoma
(LUSC) and lung adenocarcinoma (LUAD) via intra- and peritumoral CT radiomics features and ensemble
learning
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Figure 2

Inclusion-exclusion criteria of this study to obtain 105 eligible subjects including 47 ones with lung
squamous cell carcinoma (LUSC) and 58 with lung adenocarcinoma (LUAD)

Figure 3

Illustration of the intratumoral region (light green) manually delineated and the first ring (0 – 5 mm, light
purple) and second ring (5 – 10 mm, red) of the peritumoral regions generated by morphologically
expanding the segmented intratumoral region mask

Figure 4

Statistical analysis-based feature selection results: (a) all 839 significant features from intra- and
peritumoral regions; (b) 500 significant features from the intratumoral region; (c) 220 significant features



Page 19/22

from the first ring (0 – 5 mm) of peritumoral region; (d) 119 significant features from the second ring (5 –
10 mm) of peritumoral region

Figure 5

Intra- and peritumoral tissue distribution differences between LUSC and LUAD characterized by the
significant radiomics feature Energy on CT images with the unit normalized as “1” on the color bar

Figure 6



Page 20/22

Optimal features selected using SVM-RFE approach: (a) 12 optimal features selected from the
intratumoral region; (b) six optimal features selected from the peritumoral region; and (c) nine optimal
features selected from intra- and peritumoral regions.

Figure 7

Optimal features selected using LASSO approach: (a) six optimal features selected from the intratumoral
region; (b) six optimal features selected from the peritumoral region; and (c) eight optimal features
selected from intra- and peritumoral regions.
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Figure 8

Optimal features selected using mRMR with MID: (a) 12 optimal features selected from the intratumoral
region; (b) 12 optimal features selected from the peritumoral region; and (c) 12 optimal features selected
from intra- and peritumoral regions.

Figure 9
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Classification models developed by using five independent classifiers and the ensemble classifier with
optimal features determined by three different feature selection methods: (a) performance of
classification models developed by using different classifiers and optimal features selected by SVM-RFE
approach; (b) performance of classification models developed by using different classifiers and optimal
features selected by LASSO approach; (c) performance of classification models developed by using
different classifiers and optimal features selected by mRMR with MID
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