1 Divani, A. A. et al. Central Nervous System Manifestations Associated with COVID-19. Curr Neurol Neurosci Rep 20, 60, doi:10.1007/s11910-020-01079-7 (2020).
2 Jaywant, A. et al. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology, doi:10.1038/s41386-021-00978-8 (2021).
3 Mendez, R. et al. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J Intern Med 290, 621-631, doi:10.1111/joim.13262 (2021).
4 Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat Med 27, 601-615, doi:10.1038/s41591-021-01283-z (2021).
5 Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834-838, doi:10.1038/s41586-020-2342-5 (2020).
6 Koralnik, I. J. & Tyler, K. L. COVID-19: A Global Threat to the Nervous System. Ann Neurol 88, 1-11, doi:10.1002/ana.25807 (2020).
7 Chou, S. H. et al. Global Incidence of Neurological Manifestations Among Patients Hospitalized With COVID-19-A Report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw Open 4, e2112131, doi:10.1001/jamanetworkopen.2021.12131 (2021).
8 Taquet, M. et al. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med 18, e1003773, doi:10.1371/journal.pmed.1003773 (2021).
9 Helms, J. et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med 382, 2268-2270, doi:10.1056/NEJMc2008597 (2020).
10 Ardila, A. & Lahiri, D. Executive dysfunction in COVID-19 patients. Diabetes Metab Syndr 14, 1377-1378, doi:10.1016/j.dsx.2020.07.032 (2020).
11 Dietz, M. et al. COVID-19 pneumonia: relationship between inflammation assessed by whole-body FDG PET/CT and short-term clinical outcome. Eur J Nucl Med Mol Imaging 48, 260-268, doi:10.1007/s00259-020-04968-8 (2021).
12 Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J. & Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav Immun Health 9, 100163, doi:10.1016/j.bbih.2020.100163 (2020).
13 Mendez, R. et al. Long-term neuropsychiatric outcomes in COVID-19 survivors: A 1-year longitudinal study. J Intern Med, doi:10.1111/joim.13389 (2021).
14 Thakur, K. T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain, doi:10.1093/brain/awab148 (2021).
15 Cosentino, G. et al. Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: A critical systematic review. Eur J Neurol 28, 3856-3865, doi:10.1111/ene.15045 (2021).
16 Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 19, 919-929, doi:10.1016/S1474-4422(20)30308-2 (2020).
17 Lu, Y. et al. Cerebral Micro-Structural Changes in COVID-19 Patients - An MRI-based 3-month Follow-up Study. EClinicalMedicine 25, 100484, doi:10.1016/j.eclinm.2020.100484 (2020).
18 Bricker, T. L. et al. A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Rep 36, 109400, doi:10.1016/j.celrep.2021.109400 (2021).
19 Bryche, B. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun 89, 579-586, doi:10.1016/j.bbi.2020.06.032 (2020).
20 Hegg, C. C., Irwin, M. & Lucero, M. T. Calcium store-mediated signaling in sustentacular cells of the mouse olfactory epithelium. Glia 57, 634-644, doi:10.1002/glia.20792 (2009).
21 Bohmwald, K., Galvez, N. M. S., Rios, M. & Kalergis, A. M. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci 12, 386, doi:10.3389/fncel.2018.00386 (2018).
22 Petersen, M. A., Ryu, J. K. & Akassoglou, K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci 19, 283-301, doi:10.1038/nrn.2018.13 (2018).
23 Bowman, G. L. et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement 14, 1640-1650, doi:10.1016/j.jalz.2018.06.2857 (2018).
24 Garden, D. L., Rinaldi, A. & Nolan, M. F. Active integration of glutamatergic input to the inferior olive generates bidirectional postsynaptic potentials. J Physiol 595, 1239-1251, doi:10.1113/JP273424 (2017).
25 Bodro, M. et al. Increased CSF levels of IL-1beta, IL-6, and ACE in SARS-CoV-2-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 7, doi:10.1212/NXI.0000000000000821 (2020).
26 Kiernan, E. A., Smith, S. M., Mitchell, G. S. & Watters, J. J. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol 594, 1563-1577, doi:10.1113/JP271502 (2016).
27 Erta, M., Quintana, A. & Hidalgo, J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8, 1254-1266, doi:10.7150/ijbs.4679 (2012).
28 Fuster, J. J. & Walsh, K. The good, the bad, and the ugly of interleukin-6 signaling. EMBO J 33, 1425-1427, doi:10.15252/embj.201488856 (2014).
29 Zemla, R. & Basu, J. Hippocampal function in rodents. Curr Opin Neurobiol 43, 187-197, doi:10.1016/j.conb.2017.04.005 (2017).
30 Trouche, S., Bontempi, B., Roullet, P. & Rampon, C. Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc Natl Acad Sci U S A 106, 5919-5924, doi:10.1073/pnas.0811054106 (2009).
31 Chesnokova, V., Pechnick, R. N. & Wawrowsky, K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav Immun 58, 1-8, doi:10.1016/j.bbi.2016.01.017 (2016).
32 Zhao, Z. et al. Neuroprotection and neurogenesis: modulation of cornus ammonis 1 neuronal survival after transient forebrain ischemia by prior fimbria-fornix deafferentation. Neuroscience 140, 219-226, doi:10.1016/j.neuroscience.2006.02.011 (2006).
33 Leon-Espinosa, G. et al. Decreased adult neurogenesis in hibernating Syrian hamster. Neuroscience 333, 181-192, doi:10.1016/j.neuroscience.2016.07.016 (2016).
34 Garber, C. et al. Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1. Nat Immunol 19, 151-161, doi:10.1038/s41590-017-0021-y (2018).
35 Kong, X. et al. JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation. Brain Behav Immun 79, 159-173, doi:10.1016/j.bbi.2019.01.027 (2019).
36 Mandyam, C. D., Harburg, G. C. & Eisch, A. J. Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience 146, 108-122 (2007).
37 Kempermann, G. et al. Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell 23, 25-30, doi:10.1016/j.stem.2018.04.004 (2018).
38 Boldrini, M. et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell 22, 589-599 e585, doi:10.1016/j.stem.2018.03.015 (2018).
39 Tobin, M. K. et al. Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer's Disease Patients. Cell Stem Cell 24, 974-982 e973, doi:10.1016/j.stem.2019.05.003 (2019).
40 Moreno-Jimenez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med 25, 554-560, doi:10.1038/s41591-019-0375-9 (2019).
41 Nelson, B. R. et al. Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. Elife 9, doi:10.7554/eLife.53777 (2020).
42 Gleeson, J. G., Lin, P. T., Flanagan, L. A. & Walsh, C. A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257-271, doi:10.1016/s0896-6273(00)80778-3 (1999).
43 Kohler, S. J., Williams, N. I., Stanton, G. B., Cameron, J. L. & Greenough, W. T. Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc Natl Acad Sci U S A 108, 10326-10331, doi:1017099108 [pii]
10.1073/pnas.1017099108 (2011).
44 Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nature Biotechnology, 1-7, doi:10.1038/s41587-020-0591-3 (2020).
45 Tartt, A. N. et al. Considerations for Assessing the Extent of Hippocampal Neurogenesis in the Adult and Aging Human Brain. Cell Stem Cell 23, 782-783, doi:10.1016/j.stem.2018.10.025 (2018).
46 Meyer, J. H. et al. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 7, 1064-1074, doi:10.1016/S2215-0366(20)30255-8 (2020).
47 Srinivasan, S. & Avadhani, N. G. Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med 53, 1252-1263, doi:10.1016/j.freeradbiomed.2012.07.021 (2012).
48 Malavolta, M., Giacconi, R., Brunetti, D., Provinciali, M. & Maggi, F. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats. Cells 9, doi:10.3390/cells9040909 (2020).
49 Green, H. F. et al. A role for interleukin-1beta in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol Cell Neurosci 49, 311-321, doi:10.1016/j.mcn.2012.01.001 (2012).
50 Soung, A. L., Dave, V.A., Garber, C., Tycksen, E.D., Vollmer, L.L., Klein, R.S. IL-1 reprogramming of adult neural stem cells limits neurocognitive recovery after viral encephalitis by maintaining a proinflammatory state. Brain, Behavior, and Immunity in press (2021).
51 Hagihara, H. et al. Expression of progenitor cell/immature neuron markers does not present definitive evidence for adult neurogenesis. Mol Brain 12, 108, doi:10.1186/s13041-019-0522-8 (2019).
52 Antwi-Amoabeng, D. et al. Clinical outcomes in COVID-19 patients treated with tocilizumab: An individual patient data systematic review. J Med Virol 92, 2516-2522, doi:10.1002/jmv.26038 (2020).
53 Bozzi, G. et al. Anakinra combined with methylprednisolone in patients with severe COVID-19 pneumonia and hyperinflammation: An observational cohort study. J Allergy Clin Immunol 147, 561-566 e564, doi:10.1016/j.jaci.2020.11.006 (2021).
54 Lewis, J. H. Working to recognized standards: a prerequisite for drug testing in Australia. Ther Drug Monit 24, 182-186, doi:10.1097/00007691-200202000-00029 (2002).
55 Kelly, T. M. & Mann, J. J. Validity of DSM-III-R diagnosis by psychological autopsy: a comparison with clinician ante-mortem diagnosis. Acta Psychiatr Scand 94, 337-343, doi:10.1111/j.1600-0447.1996.tb09869.x (1996).