1. Diamond, A. Executive Functions. Annu. Rev. Psychol. 64, 135–168 (2013).
2. Zelazo, P. D., Blair, C. B. & Willoughby, M. T. Executive Function: Implications for education. 1–148 (2016).
3. Morra, S., Panesi, S., Traverso, L. & Usai, M. C. Which tasks measure what? Reflections on executive function development and a commentary on Podjarny, Kamawar, and Andrews (2017). J. Exp. Child Psychol. 167, 246–258 (2018).
4. Niendam, T. A. et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268 (2012).
5. Doebel, S. Rethinking executive runction and its development. Perspect. Psychol. Sci. 15, 942–956 (2020).
6. Mungas, D. et al. NIH toolbox cognition battery (CB): Factor structure for 3 to 15 year olds. Monogr. Soc. Res. Child Dev. 78, 103–118 (2013).
7. Shing, Y. L., Lindenberger, U., Diamond, A., Li, S. C. & Davidson, M. C. Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Dev. Neuropsychol. 35, 679–697 (2010).
8. Johnson, M. H. Interactive Specialization: A domain-general framework for human functional brain development? Dev. Cogn. Neurosci. 1, 7–21 (2011).
9. Lee, K., Bull, R. & Ho, R. M. H. Developmental changes in executive functioning. Child Dev. 84, 1933–1953 (2013).
10. Best, J. R. & Miller, P. H. A developmental perspective on executive function. Child Dev. 81, 1641–1660 (2010).
11. Anguera, J. A. et al. Video game training enhances cognitive control in older adults. Nature 501, 97–101 (2013).
12. Anguera, J. A., Jordan, J. T., Castaneda, D., Gazzaley, A. & Areán, P. A. Conducting a fully mobile and randomised clinical trial for depression: Access, engagement and expense. BMJ Innov. 2, 14–21 (2016).
13. Anguera, J. A. et al. Characterizing cognitive control abilities in children with 16p11.2 deletion using adaptive ‘video game’ technology: A pilot study. Transl. Psychiatry 6, (2016).
14. Miyake, A., Emerson, M. J. & Friedman, N. P. Assessment of executive functions in clinical settings: Problems and recommendations. Semin. Speech Lang. Volume 21, 0169–0183 (2000).
15. Karr, J. E. et al. The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychol. Bull. 144, 1147–1185 (2018).
16. Friedman, N. P. et al. Individual differences in executive functions are almost entirely genetic in origin. J. Exp. Psychol. Gen. 137, 201–225 (2008).
17. Friedman, N. P. & Miyake, A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 86, 186–204 (2017).
18. Smolker, H. R., Friedman, N. P., Hewitt, J. K. & Banich, M. T. Neuroanatomical correlates of the unity and diversity model of executive function in young adults. Front. Hum. Neurosci. 12, 283 (2018).
19. Reineberg, A. E., Andrews-Hanna, J. R., Depue, B. E., Friedman, N. P. & Banich, M. T. Resting-state networks predict individual differences in common and specific aspects of executive function. Neuroimage 104, 69–78 (2015).
20. Borsboom, D. & Cramer, A. O. J. Network analysis: An integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9, 91–121 (2013).
21. Fried, E. I. et al. Mental disorders as networks of problems: a review of recent insights. Social Psychiatry and Psychiatric Epidemiology 52, (2017).
22. Golino, H. F. & Demetriou, A. Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis. Intelligence 62, 54–70 (2017).
23. van der Maas, H. L. J., Kan, K. J., Marsman, M. & Stevenson, C. E. Network models for cognitive development and intelligence. J. Intell. 5, 1–17 (2017).
24. Costantini, G. et al. State of the aRt personality research: A tutorial on network analysis of personality data in R. J. Res. Pers. 54, 13–29 (2015).
25. Anderson, P. Assessment and development of executive function (EF) during childhood. Child Neuropsychol. 8, 71–82 (2002).
26. Best, J. R., Miller, P. H. & Naglieri, J. A. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 21, 327–336 (2011).
27. Romine, C. B. & Reynolds, C. R. A model of the development of frontal lobe functioning: Findings from a meta-analysis. Applied Neuropsychology 12, 190–201 (2005).
28. Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cogn. Psychol. 41, 49–100 (2000).
29. Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J. & Gabrieli, J. D. E. Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron 33, 301–311 (2002).
30. Ishihara, S. Tests for colour-blindness. (Kanehara Shuppan Co., 1972).
31. Younger, J. W. et al. Development of executive function in middle childhood: a large-scale, in-school, longitudinal investigation. Pre-print at https://psyarxiv.com/xf489/ (2021)
32. Deserno, M., Sachisthal, M. & Epskamp, S. A magnifying glass for the study of coupled developmental changes: Combining psychological networks and latent growth models. Pre-print at https://psyarxiv.com/ngfxq/ (2021).
33. Epskamp, S., Isvoranu, A.-M. & Cheung, M. W.-L. Meta-analytic Gaussian Network Aggregation. Psychom. 2021 1–35 (2021).
34. Kan, K. J., De Jonge, H., Van Der Maas, H. L. J., Levine, S. Z. & Epskamp, S. How to compare psychometric factor and network models. J. Intell. 8, 1–10 (2020).
35. Kan, K. J., van der Maas, H. L. J. & Levine, S. Z. Extending psychometric network analysis: Empirical evidence against g in favor of mutualism? Intelligence 73, 52–62 (2019).
36. Molenaar, D., Dolan, C. V., Wicherts, J. M. & van der Maas, H. L. J. Modeling differentiation of cognitive abilities within the higher-order factor model using moderated factor analysis. Intelligence 38, 611–624 (2010).
37. Diamond, A. & Lee, K. Interventions shown to aid executive function development in children 4 to 12 years old. Science 333, 959–64 (2011).
38. Jacob, R. & Parkinson, J. The potential for school-based interventions that target executive function to improve academic achievement: A review. Rev. Educ. Res. 85, 512–552 (2015).
39. Titz, C. & Karbach, J. Working memory and executive functions: effects of training on academic achievement. Psychological Research 78, 852–868 (2014).
40. Christ, S. E., White, D. A., Mandernach, T. & Keys, B. A. Inhibitory control across the life span. Dev. Neuropsychol. 20, 653–669 (2001).
41. Fry, A. F. & Hale, S. Processing apeed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychol. Sci. 7, 237–241 (1996).
42. Corsi, P. M. Human memory and the medial temporal region of the brain. Diss. Abstr. Int. 34, 891 (1973).
43. Greenberg, L., Leark, R., Dupuy, T. & Corman, C. The Test of Variables of Attention (TOVA). (1991).
44. Eversheim, U. & Bock, O. Evidence for processing stages in skill acquisition: A dual-task study. Learn. Mem. 8, 183–189 (2001).
45. Mead, L. A. et al. Neural basis of the Stroop interference task: Response competition or selective attention? J. Int. Neuropsychol. Soc. 8, 735–742 (2002).
46. Eriksen, B. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).
47. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).
48. Leark, R. A., Greenberg, L. M., Kindschi, C. L., Dupuy, T. R. & Hughes, S. J. The TOVA Professional Manual. (The Tova Company, 2018).
49. Green, D. M. & Swets, J. A. Signal detection theory and psychophyisics. (Wiley & Sons, Inc., 1966).
50. Vandierendonck, A. A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure. Behav. Res. Methods 49, 653–673 (2017).
51. Woltz, D. J. & Was, C. A. Availability of related long-term memory during and after attention focus in working memory. Mem. Cognit. 34, 668–684 (2006).
52. Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
53. Cook, R. D. Detection of influential observation in linear regression. Technometrics 19, 15–18 (1977).
54. Brocki, K. C. & Bohlin, G. Executive functions in children aged 6 to 13: A dimensional and developmental study. Dev. Neuropsychol. 26, 571–593 (2004).
55. Muthén, L. K. & Muthén, B. O. User ’s Guide Manual. 1–13 (2017).
56. Satorra, A. & Bentler, P. M. Ensuring positiveness of the scaled difference Chi-square test statistic. Psychometrika 75, 243–248 (2010).
57. Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 6, 1–55 (1999).
58. Kline, R. B. Principles and practice of structural equation modeling, 3rd ed. Principles and practice of structural equation modeling, 3rd ed. xvi, 427–xvi, 427 (2011).
59. Friedman, N. P., Miyake, A., Robinson, J. L. & Hewitt, J. K. Developmental trajectories in toddlers’ self-restraint predict individual differences in executive functions 14 years later: a behavioral genetic analysis. Dev. Psychol. 47, 1410–30 (2011).
60. Core Development Team, R. A language and environment for statistical computing. R Found. Stat. Comput. 2, https://www.R-project.org (2020).
61. Epskamp, S., Borsboom, D. & Fried, E. I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 50, 195–212 (2018).
62. Epskamp, S. bootnet: Bootstrap methods for various network estimation routines. R-package (2015).
63. Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006).
64. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. Complex Sy, 1695 (2006).
65. Csardi, M. G. Package ‘igraph’: Network Analysis and Visualization. (2015).
66. Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. Qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 48, (2012).
67. Epskamp, S., Costantini, G., … J. H.-R. & 2021, U. Package ‘qgraph’. R-package (2017).