1. Sakao, S., N.F. Voelkel, and K. Tatsumi, The vascular bed in COPD: pulmonary hypertension and pulmonary vascular alterations. Eur Respir Rev, 2014. 23(133): p. 350-5.
2. Humbert, M., et al., Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J, 2019. 53(1).
3. Colvin, K.L., et al., Bronchus-associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies. Am J Respir Crit Care Med, 2013. 188(9): p. 1126-36.
4. Frid, M.G., et al., Immunoglobulin-driven Complement Activation Regulates Proinflammatory Remodeling in Pulmonary Hypertension. Am J Respir Crit Care Med, 2020. 201(2): p. 224-239.
5. Terrier, B., et al., Identification of target antigens of antifibroblast antibodies in pulmonary arterial hypertension. Am J Respir Crit Care Med, 2008. 177(10): p. 1128-34.
6. Arends, S.J., et al., Prevalence of anti-endothelial cell antibodies in idiopathic pulmonary arterial hypertension. Eur Respir J, 2010. 35(4): p. 923-5.
7. Dib, H., et al., Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. Eur Respir J, 2012. 39(6): p. 1405-14.
8. Kashiwada, M., et al., IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. Proc Natl Acad Sci U S A, 2010. 107(2): p. 821-6.
9. Srikakulapu, P., et al., Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE-/- mice. Arterioscler Thromb Vasc Biol, 2016. 36(6): p. 1174-85.
10. Wang, J., et al., IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/- mice. J Clin Invest, 2011. 121(9): p. 3564-77.
11. Wang, J., et al., IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Mol Med, 2014. 6(7): p. 952-69.
12. Wu, L.C. and A.A. Zarrin, The production and regulation of IgE by the immune system. Nat Rev Immunol, 2014. 14(4): p. 247-59.
13. Bartelds, B., et al., Mast cell inhibition improves pulmonary vascular remodeling in pulmonary hypertension. Chest, 2012. 141(3): p. 651-660.
14. Montani, D., et al., C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med, 2011. 184(1): p. 116-23.
15. Xie, T., et al., Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Rep, 2018. 22(13): p. 3625-3640.
16. Shu, T., Y. Xing, and J. Wang, Autoimmunity in Pulmonary Arterial Hypertension: Evidence for Local Immunoglobulin Production. Frontiers in Cardiovascular Medicine, 2021. 8(1056).
17. Travaglini, K.J., et al., A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature, 2020. 587(7835): p. 619-625.
18. Dahal, B.K., et al., Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats. Respir Res, 2011. 12: p. 60.
19. Huang, J., et al., Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension. Exp Lung Res, 2010. 36(1): p. 57-66.
20. Daley, E., et al., Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med, 2008. 205(2): p. 361-72.
21. Chen, G., et al., Inhibition of CRTH2-mediated Th2 activation attenuates pulmonary hypertension in mice. J Exp Med, 2018. 215(8): p. 2175-2195.
22. Lambrecht, B.N. and H. Hammad, The immunology of asthma. Nat Immunol, 2015. 16(1): p. 45-56.
23. Teach, S.J., et al., Seasonal risk factors for asthma exacerbations among inner-city children. J Allergy Clin Immunol, 2015. 135(6): p. 1465-73 e5.
24. Jaramillo, R., et al., Relation between objective measures of atopy and myocardial infarction in the United States. J Allergy Clin Immunol, 2013. 131(2): p. 405-11 e1-11.
25. Andersson, C.K., et al., Novel site-specific mast cell subpopulations in the human lung. Thorax, 2009. 64(4): p. 297-305.
26. Dahlin, J.S. and J. Hallgren, Mast cell progenitors: origin, development and migration to tissues. Mol Immunol, 2015. 63(1): p. 9-17.
27. Chaouat, A., et al., Role for interleukin-6 in COPD-related pulmonary hypertension. Chest, 2009. 136(3): p. 678-687.
28. Prins, K.W., et al., Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J Heart Lung Transplant, 2018. 37(3): p. 376-384.
29. Breitling, S., et al., The mast cell-B cell axis in lung vascular remodeling and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2017. 312(5): p. L710-L721.
30. Cho, W.K., et al., IL-13 receptor alpha2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2013. 304(2): p. L112-24.
31. Takagi, K., et al., IL-13 enhances mesenchymal transition of pulmonary artery endothelial cells via down-regulation of miR-424/503 in vitro. Cell Signal, 2018. 42: p. 270-280.
32. Platzer, B., M. Stout, and E. Fiebiger, Functions of dendritic-cell-bound IgE in allergy. Mol Immunol, 2015. 68(2 Pt A): p. 116-9.
33. Perros, F., et al., Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J, 2007. 29(3): p. 462-8.
34. Baravalle, G., et al., Antigen-conjugated human IgE induces antigen-specific T cell tolerance in a humanized mouse model. J Immunol, 2014. 192(7): p. 3280-8.
35. Sallmann, E., et al., High-affinity IgE receptors on dendritic cells exacerbate Th2-dependent inflammation. J Immunol, 2011. 187(1): p. 164-71.
36. Farha, S., et al., Mast cell number, phenotype, and function in human pulmonary arterial hypertension. Pulm Circ, 2012. 2(2): p. 220-8.