1. Ates, B., Koytepe, S., Ulu, A., Gurses, C. & Thakur, V.K. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120, 9304-9362 (2020)
2. Black, J.T. & Kohser, R.A. DeGarmo's materials and processes in manufacturing. (John Wiley & Sons, 2020).
3. Eivazzadeh-Keihan, R. et al. A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 140, 407-414 (2019).
4. Eivazzadeh-Keihan, R. et al. Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. Int. J. Biol. Macromol. 192, 7-15 (2021).
5. Kaushik, A., Solanki, P.R., Ansari, A.A., Ahmad, S. & Malhotra, B.D. Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochem. Commun. 10, 1364-1368 (2008).
6. Varghese, L.R. & Nilanjana, D. Application of nano-biocomposites for remediation of heavy metals from aqueous environment: an overview. Int. J. Chemtech Res. 8, 566-571 (2015).
7. Kaushik, A. et al. Iron oxide-chitosan nanobiocomposite for urea sensor. Sens. Actuators B Chem. 138, 572-580 (2009).
8. Cava, D., Giménez, E., Gavara, R. & Lagaron, J.M. Comparative performance and barrier properties of biodegradable thermoplastics and nanobiocomposites versus PET for food packaging applications. J. Plast. Film Sheeting. 22, 265-274 (2006).
9. Maleki, A., Firouzi-Haji, R. & Hajizadeh, Z. Magnetic guanidinylated chitosan nanobiocomposite: a green catalyst for the synthesis of 1, 4-dihydropyridines. Int. J. Biol. Macromol. 116, 320-326 (2018).
10. Taheri-Ledari, R. et al. Facile route to synthesize Fe3O4@acacia–SO3H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Adv. 10, 40055-40067 (2020).
11. Maleki, A., Panahzadeh, M. & Eivazzadeh-keihan, R. Agar: a natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1, 2, 3–triazoles. Green Chem. Lett. Rev. 12, 395-406 (2019).
12. Asgharnasl, S., Eivazzadeh-Keihan, R., Radinekiyan, F. & Maleki, A. Preparation of a novel magnetic bionanocomposite based on factionalized chitosan by creatine and its application in the synthesis of polyhydroquinoline, 1, 4-dyhdropyridine and 1, 8-dioxo-decahydroacridine derivatives. Int. J. Biol. Macromol. 144, 29-46 (2020).
13. Darvishi Cheshmeh Soltani, R. et al. Response surface methodological evaluation of the adsorption of textile dye onto biosilica/alginate nanobiocomposite: thermodynamic, kinetic, and isotherm studies. Desalination Water Treat. 56, 1389-1402 (2015).
14. Rahim, M., Haris, M.R. & Saqib, N.U. An overview of polymeric nano-biocomposites as targeted and controlled-release devices. Biophys. Rev. 12, 1-9 (2020).
15. Yang, Z. et al. Chitosan-based nano-biocomposites and their applications in medicine and pharmaceutics. Curr. Org. Chem. 22, 628-640 (2018).
16. Eivazzadeh-Keihan, R, et al. Hybrid bionanocomposite containing magnesium hydroxide nanoparticles embedded in a carboxymethyl cellulose hydrogel plus silk fibroin as a scaffold for wound dressing applications. ACS Appl. Mater. Interfaces. 13, 33840-33849 (2021).
17. Eivazzadeh-Keihan, R. et al. Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci. Rep. 11, 1-3 (2021).
18. Eivazzadeh-Keihan, R. et al. A natural and eco-friendly magnetic nanobiocomposite based on activated chitosan for heavy metals adsorption and the in-vitro hyperthermia of cancer therapy. J. Mater. Res. Technol. 9, 12244-12259 (2020).
19. Bani, M.S. et al. Casein-coated iron oxide nanoparticles for in vitro hyperthermia for cancer therapy. Spin. 9, 1940003 (2019).
20. Naskar, D., Bhattacharjee, P. & Ghosh, A.K., Mandal M, Kundu SC. Carbon nanofiber reinforced nonmulberry silk protein fibroin nanobiocomposite for tissue engineering applications. ACS Appl. Mater. Interfaces. 9, 19356-19370 (2017).
21. Eivazzadeh-Keihan, R. et al. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res. 18, 185-201 (2019).
22. Eivazzadeh-Keihan, R., Radinekiyan, F., Madanchi, H., Aliabadi, H.A. & Maleki, A. Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 248, 116802 (2020).
23. Song, J., et al. The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon. 95, 1039-1050 (2015).
24. Ahmad, H., Fan, M. & Hui, D. Graphene oxide incorporated functional materials: A review. Compos. B. Eng. 145, 270-280 (2018).
25. Bei, H.P., et al. Graphene-based nanocomposites for neural tissue engineering. Molecules. 24, 658 (2019).
26. Seabra, A.B., Paula, A.J., de Lima, R., Alves, O.L., Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27, 159-168 (2014).
27. Zhang, Y. & Naebe, M. Lignin: A review on structure, properties, and applications as a light-colored UV absorber. ACS Sustain. Chem. Eng. 9, 1427-1442 (2021).
28. Saake, B. & Lehnen, R. Lignin. Ullmann's encycl. ind. chem. 21, 21-36 (2000).
29. Spiridon, I., Poni, P. & Ghica, G. Biological and pharmaceutical applications of lignin and its derivatives: a mini-review. Cellul. Chem. Technol. 52, 543-550 (2018).
30. Nguyen, T.P. et al. Silk fibroin-based biomaterials for biomedical applications: A review. Polymers. 11, 1933 (2019).
31. Eivazzadeh-Keihan, R. et al. Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv. 11, 17914-17923 (2021).
32. Wang, S.D., Ma, Q., Wang, K. & Chen, H.W. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide. ACS omega. 3, 406-413 (2018).
33. Calamak, S. et al. Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity. Eur. Polym. J. 67, 99-112 (2015).
34. Guang, S. et al. Chitosan/silk fibroin composite scaffolds for wound dressing. J. Appl. Polym. Sci. 132, 42503 (2015).
35. Nolan, H. et al. Metal nanoparticle‐hydrogel nanocomposites for biomedical applications–An atmospheric pressure plasma synthesis approach. Plasma Process. Polym. 15, 1800112 (2018).
36. Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Bani, M.S. & Azizi, M. A new generation of star polymer: magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. J. Mater. Sci. 55, 319-336 (2020).
37. Eivazzadeh-Keihan, R. et al. Magnetic copper ferrite nanoparticles functionalized by aromatic polyamide chains for hyperthermia applications. Langmuir. 37, 8847-8854 (2021).
38. Dahaghin, A. et al. A numerical investigation into the magnetic nanoparticles hyperthermia cancer treatment injection strategies. Biocybern. Biomed. Eng. 41, 516-526 (2021).
39. Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174 (2019).
40. Nasrollahzadeh, M., Mahmoudi‐Gom Yek, S., Motahharifar, N. & Ghafori Gorab, M. Recent developments in the plant‐mediated green synthesis of Ag‐based nanoparticles for environmental and catalytic applications. Chem. Rec. 19, 2436-2479 (2019).
41. Makarov, V.V. et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 6, 35-44 (2014).
42. Shahabuddin, S., Sarih, N.M., Afzal Kamboh, M., Rashidi Nodeh, H. & Mohamad, S. Synthesis of polyaniline-coated graphene oxide@SrTiO3 nanocube nanocomposites for enhanced removal of carcinogenic dyes from aqueous solution. Polymers. 8, 305 (2016).
43. Atrian, M., Kharaziha, M., Emadi, R. & Alihosseini F. Silk-LAPONITE® fibrous membranes for bone tissue engineering. Appl. Clay Sci. 174, 90-99 (2019).
44. Chang, Y.N. et al. Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation. Appl. Surf. Sci. 343, 1-10 (2015).
45. Eivazzadeh-Keihan, R. & Maleki, A. Design and synthesis of a new magnetic aromatic organo-silane star polymer with unique nanoplate morphology and hyperthermia application. J. Nanostructure Chem. 1-7; 10.1007/s40097-021-00401-0 (2021).
46. Eivazzadeh-Keihan, R. et al. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 162, 1959-1971 (2020).
47. Jaganathan, S.K., Mani, M.P., Ayyar, M., Krishnasamy, N.P. & Nageswaran, G. Blood compatibility and physicochemical assessment of novel nanocomposite comprising polyurethane and dietary carotino oil for cardiac tissue engineering applications. J. Appl. Polym. Sci. 135, 45691 (2018).
48. Haney, E.F., Trimble, M.J., Cheng, J.T., Vallé, Q. & Hancock, R.E. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules. 8, 29 (2018).
49. Eyvazzadeh-Keihan, R., Bahrami, N., Taheri-Ledari, R. & Maleki, A. Highly facilitated synthesis of phenyl (tetramethyl) acridinedione pharmaceuticals by a magnetized nanoscale catalytic system, constructed of GO, Fe3O4 and creatine. Diam. Relat. Mater. 102, 107661 (2020).
50. Zolghadr, S., Kimiagar, S. & Davarpanah, A.M. Magnetic Property of α -Fe2O3–GO Nanocomposite. IEEE Trans. Magn. 53, 1-6 (2017).
51. Nandanwar, R.A., Chaudhari, A.R. & Ekhe, J.D. Nitrobenzene oxidation for isolation of value added products from industrial waste lignin. J. Chem. Biol. Phys. Sci. 6, 501-513 (2016).
52. Eivazzadeh-Keihan, R. et al. Fe3O4/GO@melamine-ZnO nanocomposite: a promising versatile tool for organic catalysis and electrical capacitance. Colloids Surf. A Physicochem. Eng. Asp. 587, 124335 (2020).
53. Ramesh, M., Anbuvannan, M. & Viruthagiri, G.J. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 864-870 (2015).
54. Seyedi, N., Nejad, M.S., Saidi, K. & Sheibani, H. Evaluation of functionalized reduced graphene oxide upgraded with gold nanoparticles as a hybrid nanocatalyst for the solvent-free oxidation of cyclohexene by molecular oxygen. C. R. Chim. 23, 63-75 (2020).
55. Gomide, R.A. et al. Development and characterization of lignin microparticles for physical and antioxidant enhancement of biodegradable polymers. J. Polym. Environ. 28, 1326-1334 (2020).
56. Klapiszewski, Ł., Bula, K., Sobczak, M. & Jesionowski, T. Influence of processing conditions on the thermal stability and mechanical properties of PP/silica-lignin composites. Int. J. Polym. Sci. 2016, 1-9 (2016).
57. Chunduri, L.A. et al. Streptavidin conjugated ZnO nanoparticles for early detection of HIV infection. Adv. Mater. Lett. 8, 472-480 (2017).