[1] F. Massi, J. Rocchi, A. Culla, Y. Berthier, Coupling system dynamics and contact behaviour: Modelling bearings subjected to environmental induced vibrations and ‘false brinelling’ degradation, Mech Syst Signal Process, 24 (2010) 1068-1080.
[2] J. Silva, A.J.M. Cardoso, Bearing failures diagnosis in three-phase induction motors by extended Park's Vector approach, 31st Annual Conference of IEEE Industrial Electronics Society, (2005) 6.
[3] A. Yano, Y. Noda, Y. Akiyama, N. Watanabe, T. Fujitsuka, Evaluation of fretting protection property of lubricating grease applied to thrust ball bearing-Comparison between ASTM D4170 test and Impact Fretting test, Tribology Online, 5 (2010) 52-59.
[4] A. Greco, S. Sheng, J. Keller, A. Erdemir, Material wear and fatigue in wind turbine Systems, Wear, 302 (2013) 1583-1591.
[5] K. Fallahnezhad, S. Liu, O. Brinji, M. Marker, P.A. Meehan, Monitoring and modelling of false brinelling for railway bearings, Wear, 424-425 (2019) 151-164.
[6] Z.R. Zhou, L. Vincent, Lubrication in fretting—a review, Wear, 225-229 (1999) 962-967.
[7] D. Godfrey, Fretting corrosion or false brinelling ? , Tribol Lubr Technol, 59 (2003) 28-30.
[8] A. Kontou, R.I. Taylor, H.A. Spikes, Effects of dispersant and ZDDP additives on fretting wear, Tribol Lett, 69 (2020) 6.
[9] F. Schwack, F. Prigge, G. Poll, Finite element simulation and experimental analysis of false brinelling and fretting corrosion, Tribol Int, 126 (2018) 352-362.
[10] R. Errichello, Another perspective: false brinelling and fretting corrosion, Lubr Eng, 60 (2004) 34-36.
[11] F. Schwack, N. Bader, J. Leckner, C. Demaille, G. Poll, A study of grease lubricants under wind turbine pitch bearing conditions, Wear, 454-455 (2020) 203335.
[12] K. Fallahnezhad, O. Brinji, A. Desai, P.A. Meehan, The influence of different types of loading on false brinelling, Wear, 440-441 (2019) 203097.
[13] Z.R. Zhou, P. Kapsa, L. Vincent, Grease lubrication in fretting, Journal of Tribology, 120 (1998) 737-743.
[14] A. Saatchi, The effect of grease composition on fretting wear, University of Akron, 2019.
[15] M. Shima, H. Suetake, I.R. McColl, R.B. Waterhouse, M. Takeuchi, On the behaviour of an oil lubricated fretting contact, Wear, 210 (1997) 304-310.
[16] T. Maruyama, T. Saitoh, Oil film behavior under minute vibrating conditions in EHL point contacts, Tribol Int, 43 (2010) 1279-1286.
[17] T. Maruyama, T. Saitoh, A. Yokouchi, Differences in mechanisms for fretting wear reduction between oil and grease lubrication, Tribol Trans, 60 (2017) 497-505.
[18] Q.Y. Liu, Z.R. Zhou, Effect of displacement amplitude in oil-lubricated fretting, Wear, 239 (2000) 237-243.
[19] H. Pittroff, Fretting corrosion caused by vibration with rolling bearings stationary, Journal of Basic Engineering, 87 (1965) 713-723.
[20] T. Kita, Y. Yamamoto, Fretting wear performance of lithium 12-hydroxystearate greases for thrust ball bearing in reciprocating motion, JPN J Tribol, 42 (1997) 492-499.
[21] A. Tomala, A. Naveira-Suarez, I.C. Gebeshuber, R. Pasaribu, Effect of base oil polarity on micro and nanofriction behaviour of base oil + ZDDP solutions, Tribol Mater Surf Interfaces, 3 (2009) 182-188.
[22] A. Naveira Suarez, M. Grahn, R. Pasaribu, R. Larsson, The influence of base oil polarity on the tribological performance of zinc dialkyl dithiophospate additives, Tribol Int, 43 (2010) 2268-2278.
[23] M. Grahn, A. Naveira-Suarez, R. Pasaribu, Effect of ZDDP on friction in fretting contacts, Wear, 273 (2011) 70-74.
[24] K. Topolovec-Miklozic, T.R. Forbus, H.A. Spikes, Film thickness and roughness of ZDDP antiwear films, Tribol Lett, 26 (2007) 161-171.
[25] J. Zhang, H. Spikes, On the mechanism of ZDDP antiwear film formation, Tribol Lett, 63 (2016) 24.
[26] C.-L. Lin, P.A. Meehan, Microstructure characterization of degraded grease in axle roller bearings, Tribol Trans, 62 (2019) 667-687.
[27] P.M. Lugt, A review on grease lubrication in rolling bearings, Tribol Trans, 52 (2009) 470-480.
[28] N. De Laurentis, A. Kadiric, P. Lugt, P. Cann, The influence of bearing grease composition on friction in rolling/sliding concentrated contacts, Tribol Int, 94 (2016) 624-632.
[29] D. Gonçalves, B. Graça, A.V. Campos, J. Seabra, J. Leckner, R. Westbroek, Formulation, rheology and thermal ageing of polymer greases-Part I: influence of the thickener content, Tribol Int, 87 (2015) 160-170.
[30] F. Cyriac, P.M. Lugt, R. Bosman, C.J. Padberg, C.H. Venner, Effect of thickener particle geometry and concentration on the grease EHL film thickness at medium speeds, Tribol Lett, 61 (2016) 18.
[31] G.C. Smith, J.C. Bell, Multi-technique surface analytical studies of automotive anti-wear films, Appl Surf Sci, 144-145 (1999) 222-227.
[32] R. Heuberger, A. Rossi, N.D. Spencer, XPS study of the influence of temperature on ZnDTP tribofilm composition, Tribol Lett, 25 (2007) 185-196.
[33] I. Nedelcu, E. Piras, A. Rossi, H.R. Pasaribu, XPS analysis on the influence of water on the evolution of zinc dialkyldithiophosphate–derived reaction layer in lubricated rolling contacts, Surf Interface Anal, 44 (2012) 1219-1224.
[34] J.M. Martin, Antiwear mechanisms of zinc dithiophosphate: a chemical hardness approach, Tribol Lett, 6 (1999) 1-8.
[35] M. Kasrai, M.S. Fuller, G.M. Bancroft, E.S. Yamaguchi, P.R. Ryason, X-Ray absorption study of the effect of calcium sulfonate on antiwear film formation generated from neutral and basic ZDDPs: Part 2 — sulfur species, Tribol Trans, 46 (2003) 543-549.
[36] J.M. Martin, C. Grossiord, K. Varlot, B. Vacher, J. Igarashi, Synergistic effects in binary systems of lubricant additives: a chemical hardness approach, Tribol Lett, 8 (2000) 193-201.
[37] S. Soltanahmadi, E.A. Esfahani, I. Nedelcu, A. Morina, M.C.P. van Eijk, A. Neville, Surface reaction films from amine-based organic friction modifiers and their influence on surface fatigue and friction, Tribol Lett, 67 (2019) 80.
[38] M. Cabán-Acevedo, M.S. Faber, Y. Tan, R.J. Hamers, S. Jin, Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires, Nano Letters, 12 (2012) 1977-1982.
[39] T. Nogi, M. Soma, D. Dong, Numerical analysis of grease film thickness and thickener concentration in elastohydrodynamic lubrication of point contacts, Tribol Trans, 63 (2020) 924-934.
[40] J. Zhang, M. Ueda, S. Campen, H. Spikes, Boundary friction of ZDDP tribofilms, Tribol Lett, 69 (2020) 8.
[41] S. Soltanahmadi, A. Morina, M.C.P. van Eijk, I. Nedelcu, A. Neville, Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation, Appl Surf Sci, 414 (2017) 41-51.
[42] K. Ito, J.M. Martin, C. Minfray, K. Kato, Formation mechanism of a low friction ZDDP tribofilm on iron oxide, Tribol Trans, 50 (2007) 211-216.
[43] H. Fujita, H.A. Spikes, The formation of zinc dithiophosphate antiwear films, Proceedings of the Institution of Mechanical Engineers, Part: Journal J, 218 (2004) 265-278.
[44] H. Fujita, R.P. Glovnea, H.A. Spikes, Study of zinc dialkydithiophosphate antiwear film formation and removal processes, Part I: experimental, Tribol Trans, 48 (2005) 558-566.
[45] P.M. Lugt, Lubrication mehanisms, in: P.M. Lugt (Ed.) Grease lubrication in rolling bearings, John Wiley & Sons Ltd., 2012, pp. 5-21.
[46] J. Shu, K. Harris, B. Munavirov, R. Westbroek, J. Leckner, S. Glavatskih, Tribology of polypropylene and Li-complex greases with ZDDP and MoDTC additives, Tribol Int, 118 (2018) 189-195.
[47] N.A. Suarez, The behaviour of antiwear additives in lubricated rolling-sliding contacts, Mechine elements, Lulea University of Technology, Sweden, 2011.
[48] R.K. Dixena, E. Sayanna, R.P. Badoni, A study on tribological behaviours of ZDDP in polymer thickened lubricating greases, Lubrication Science, 28 (2016) 177-186.
[49] M. Sivik, J.B. Zeitz, D. Bayus, Interactions of a zinc dithiophosphate with lithium 12-hydroxystearate grease, NLGI Spokesman, 66 (2002) 20-24.
[50] L. Hao, Z. Jiang, D. Wei, Y. Zhao, J. Zhao, M. Luo, L. Ma, S. Luo, L. Jiang, Effect of extreme pressure agents on the anti-scratch behaviour of high-speed steel material, Tribol Int, 81 (2015) 19-28.