[1] R. Mehrara, S. Malekie, S.M. Saleh Kotahi, S. Kashian, Introducing a novel low energy gamma ray shield utilizing Polycarbonate Bismuth Oxide composite, Scientific Reports, 11 (2021) 10614.
[2] A. Rahimi, F. Ziaie, N. Sheikh, S. Malekie, Calorimetry System Based on Polystyrene/MWCNT Nanocomposite for Electron Beam Dosimetry: A New Approach, Nanotechnologies In Russia, 15 (2020) 175–181.
[3] A. Mosayebi, S. Malekie, A. Rahimi, F. Ziaie, Experimental study on polystyrene-MWCNT nanocomposite as a radiation dosimeter, Radiation Physics and Chemistry, 164 (2019) 108362.
[4] F. Kazemi, S. Malekie, M.A. Hosseini, A Monte Carlo Study on the Shielding Properties of a Novel Polyvinyl Alcohol (PVA)/WO3 Composite, Against Gamma Rays, Using the MCNPX Code, Journal of Biomedical Physics Engineering, 9 (2019) 465.
[5] A. Mosayebi, S. Malekie, F. Ziaie, A feasibility study of polystyrene/CNT nano-composite as a dosimeter for diagnostic and therapeutic purposes, Journal of Instrumentation, 12 (2017) P05012.
[6] S. Malekie, F. Ziaie, A two-dimensional simulation to predict the electrical behavior of carbon nanotube/polymer composites, Journal of Polymer Engineering, 37 (2017) 205-210.
[7] S. Malekie, N. Hajiloo, Comparative Study of Micro and Nano Size WO3/E44 Epoxy Composite as Gamma Radiation Shielding Using MCNP and Experiment, Chinese Physics Letter, 34 (2017) 108102.
[8] S. Feizi, S. Malekie, R. Rahighi, A. Tayyebi, F. Ziaie, Evaluation of dosimetric characteristics of graphene oxide/PVC nanocomposite for gamma radiation applications, Radiochimica Acta, 105 (2017) 161-170.
[9] S. Malekie, F. Ziaie, M.A. Naeini, Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics, Kerntechnik, 81 (2016) 647-650.
[10] S. Malekie, F. Ziaie, S. Feizi, A. Esmaeli, Dosimetry characteristics of HDPE-SWCNT nanocomposite for real time application, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 833 (2016) 127-133.
[11] S. Malekie, F. Ziaie, A. Esmaeli, Study on dosimetry characteristics of polymer–CNT nanocomposites: Effect of polymer matrix, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 816 (2016) 101-105.
[12] S. Malekie, F. Ziaie, Study on a novel dosimeter based on polyethylene–carbon nanotube composite, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791 (2015) 1-5.
[13] A. Intaniwet, C.A. Mills, M. Shkunov, P.J. Sellin, J.L. Keddie, Heavy metallic oxide nanoparticles for enhanced sensitivity in semiconducting polymer x-ray detectors, Nanotechnology, 23 (2012) 235502.
[14] O. Korostynska, K. Arshak, D. Morris, A. Arshak, E. Jafer, Radiation-induced changes in the electrical properties of carbon filled PVDF thick films, Materials Science and Engineering: B, 141 (2007) 115-120.
[15] M.S. Saavedra, Novel Organic Based Nano-composite Detector Films: The Making and Testing of CNT Doped Poly(acrylate) Thin Films on Ceramic Chip Substrates, Department of Physics, University of Surrey, Guildford, Surrey, 2005, pp. 37.
[16] H. Kang, S. Min, B. Seo, C. Roh, S. Hong, J.H. Cheong, Low energy beta emitter measurement: A review, Chemosensors, 8 (2020) 106.
[17] F.H. Attix, Introduction to radiological physics and radiation dosimetry, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Madison,Wisconsin, 2004.
[18] T. Yanagida, Inorganic scintillating materials and scintillation detectors, Proceedings of the Japan Academy, Series B, 94 (2018) 75-97.
[19] J. Borg, Dosimetry of low-energy beta radiation, Risoe National Lab., 1996.
[20] L. Miramonti, A plastic scintillator detector for beta particles, Radiation Measurements, 35 (2002) 347-354.
[21] M.F. L'annunziata, Radioactivity: introduction and history, from the quantum to quarks, Elsevier2016.
[22] G.F. Knoll, Radiation Detection and Measurement, 4th ed., John Wiley & Sons, Inc, university of Michigan, USA, 2010.
[23] L. Torrisi, Radiation damage in polyvinyltoluene (PVT) induced by 50–400 keV helium beams, Radiation Effects and Defects in Solids, 143 (1997) 19-31.
[24] M. Ghergherehchi, H. Afarideh, M. Ghannadi, A. Mohammadzadeh, G.R. Aslani, B. Boghrati, Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup, Journal of Radiation Research, 51 (2010) 423-430.
[25] A. Quaranta, A. Vomiero, G. Della Mea, Scintillation mechanism and efficiency of ternary scintillator thin films, IEEE Transactions on Nuclear Science, 49 (2002) 2610-2615.
[26] A.K. Tam, O. Boyraz, J. Unangst, P. Nazareta, M. Schreuder, M. Nilsson, Quantum-dot doped polymeric scintillation material for radiation detection, Radiation Measurements, 111 (2018) 27-34.
[27] T. Osswald, J.P. Hernández-Ortiz, Polymer Processing, Modeling Simulation, Hanser Publishers, Munich, Germany2006.
[28] M.F. L'Annunziata, Radiation physics and radionuclide decay, in: Handbook of Radioactivity Analysis, Elsevier, 2012, pp. 1-162.
[29] https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.
[30] A.R. Vatankhah, M.A. Hosseini, S. Malekie, The characterization of gamma-irradiated carbon-nanostructured materials carried out using a multi-analytical approach including Raman spectroscopy, Applied Surface Science, 488 (2019) 671-680.