1. The International Diabetes Federation. Diabetes Atlas 9th edition 2019 report https://diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html
2. Dietrich, S., et al. Gene-lifestyle interaction on risk of type 2 diabetes: A systematic review. Obes. Rev. 20, 1557-1571 (2019).
3. Li, H., et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann. Hum. Genet. 73, 335-345 (2009)
4. FarrÈs, J. X., et al. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J. Biol.Chem. 269, 13854-13860 (1994).
5. Chen, Y.C., Peng, G. S., Wang, M.F., Tsao, T.P. & Yin, S.J. Polymorphism of ethanol-metabolism genes and alcoholism: correlation of allelic variations with the pharmacokinetic and pharmacodynamic consequences. Chemm. Biol. Interact. 178, 2-7 (2009).
6. Kim, S.W., et al. The role of acetaldehyde in human psychomotor function: a double-blind placebo-controlled crossover study. Biol. Psychiatry. 67, 840-845 (2010).
7. Kimura, M., A. & Higuchi, Y.S. Aldehyde dehydrogenase-2 as a therapeutic target. Expert. Opin. Ther. Targets. 23, 955-966 (2019).
8. Cadoni, G.., et al. A review of genetic epidemiology of head and neck cancer related to polymorphisms in metabolic genes, cell cycle control and alcohol metabolism. Acta. Otorhinolaryngol. Ital. 32, 1-11 (2012).
9. Spracklen, C. N., et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240-245 (2020).
10. Wen, W., et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum. Mol. Genet. 23, 5492-5504 (2014).
11. Lu, X., et al. Consortium, Exome chip meta-analysis identifies novel loci and East Asian–specific coding variants that contribute to lipid levels and coronary artery disease. Nat. Genet. 49, 1722-1730 (2017).
12. Wang, T., et al. Effects of Obesity Related Genetic Variations on Visceral and Subcutaneous Fat Distribution in a Chinese Population. Sci. Rep. 6, 20691 (2016).
13. Oniki, K., et al. The longitudinal effect of the aldehyde dehydrogenase 2*2 allele on the risk for nonalcoholic fatty liver disease. Nutr. Diabetes. 6, e210-e210 (2016).
14. Klyosov, A.A., Rashkovetsky, L.G., Tahir, M.K. & Keung, W.M. Possible Role of Liver Cytosolic and Mitochondrial Aldehyde Dehydrogenases in Acetaldehyde Metabolism. Biochemistry. 35, 4445-4456 (1996).
15. Michael Lieberman, Allan D. Marks. Marks' Basic Medical Biochemistry: A Clinical Approach. 3rd edition. Chapter 25. (Lippincott Williams & Wilkins, 2009)
16. Zhang, J., Lioy, P.J. & He, Q. Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environ. Sci. Technol. 28, 146-152 (1994).
17. O'Brien, P.J., Siraki, A.G., & Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 35, 609-662 (2005).
18. Bach, C.,et al. Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity. Food. Chem. 139, 672-680 (2013).
19. International Agency for Research on Cancer. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Agents Classified by the IARC Monographs, Volumes 1–125. https://monographs.iarc.fr/agents-classified-by-the-iarc/
20. Salaspuro, M. Acetaldehyde as a common denominator and cumulative carcinogen in digestive tract cancers. Scand. J. Gastroenterol. 44, 912-925 (2009).
21. Brooks, P.J., Enoch, M.A., Goldman, D, Li, T.L & Yokoyama, A. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS. Med. 6, e50 (2009).
22. Langevin,., Crossan, G. P., Rosado, I.V., Arends, M. J. & Patel, K. J. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 53-58 (2011).
23. Riahi Y., Cohen, G., Shamni, O. & Sasson, S. Signaling and cytotoxic functions of 4-hydroxyalkenals. Am. J. Physiol. Endocrinol. Metab. 299, E879-E886 (2010).
24. Xiao, M., Zhong, H., Xia, L., Tao, Y. & Yin, H. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free. Radic. Biol. Med. 111, 316-327 (2017).
25. Chen, C.H., et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321, 1493-1495 (2008).
26. Perez-Miller, S., et al. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat. Struct. Mol. Biol. 17, 159-164 (2010).
27. Tsai, S.H., et al. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells. FASEB. J. 34: 9498-9511.(2020)
28. Hsu, L.A., et al. Aldehyde dehydrogenase 2 ameliorates chronic alcohol consumption-induced atrial fibrillation through detoxification of 4-HNE. Int. J. Mol. Sci. 21:6678. (2020)
29. Joshi, A.U., et al. Aldehyde dehydrogenase 2 activity and aldehydic load contribute to neuroinflammation and Alzheimer's disease related pathology. Acta. Neuropathol. Commun. 7:190 (2019)
30. Zambelli, V. O., Gross, E. R., Chen, C.H., Gutierrez, V. P., Cury Y. & Daria, M-R. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain. Sci. Transl. Med. 6:251ra118 (2014).
30. Chen, C.H., Ferreira, J. C. Gross, E. R. & Daria, M-R. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol. Rev. 94, 1-34 (2014).
31. Yang, W., Yu, Y.T. & Jiang, C. Mitochondrial aldehyde dehydrogenase-2 binding compounds and methods of use thereof. U.S. Patent 9,879,036 B2, issued Jan. 30, 2018.
32. Wen, W., et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat. Genet. 44, 307-311 (2012).
33. Okada, Y., et al. Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. Nat. Genet. 44, 302-306 (2012).
34. Cho Y.S., et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67-72 (2011).
35. Zhao, Y., et al. Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free. Radic. Biol. Med. 72, 55-65 (2014).
36. Poli, G., Schaur R. J., Siems W. G. & Leonarduzzi, G. 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med. Res. Rev. 28, 569-631 (2008).
37. Labbé, S. M., et al. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB. J. 29, 2046-2058 (2015).
38. Ji. S., et al. Homozygous carnitine palmitoyltransferase 1b (muscle isoform) deficiency is lethal in the mouse. Mol. Genet. Metab. 93, 314-322 (2008).
39. Lee, J. Ellis, J. M. & Wolfgang, M.J. Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation. Cell. Rep. 10, 266-279 (2015).
40. Schuler, A.M., et al. Synergistic heterozygosity in mice with inherited enzyme deficiencies of mitochondrial fatty acid beta-oxidation. Mol. Genet. Metab. 85, 7-11 (2005).
41. Thorpe,C.& Kim, J.J. P. Structure and mechanism of action of the Acyl-CoA dehydrogenases1. FASEB. J. 9, 718-725 (1995).
42. Gregersen, N., et al. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype–phenotype relationship. Hum. Mutat. 18, 169-189 (2001).
43. Masand, R., et al. Proteome Imbalance of Mitochondrial Electron Transport Chain in Brown Adipocytes Leads to Metabolic Benefits. Cell. Metab. 27, 616-629.e614 (2018).
44. Singh, S.P., et al. Role of the Electrophilic Lipid Peroxidation Product 4-Hydroxynonenal in the Development and Maintenance of Obesity in Mice. Biochemistry. 47, 3900-3911 (2008).
45. Singh S. P., Niemczyk, M., Zimniak, L.& Zimniak, P. Fat accumulation in Caenorhabditis elegans triggered by the electrophilic lipid peroxidation product 4-hydroxynonenal (4-HNE). Aging (Albany NY) 1, 68-80 (2008).
46. Katunga, L.A., et al. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol. Metab. 4, 493-506 (2015).
47. Wang, S., et al. ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α deacetylation. Int. J. Obes .(Lond) 42, 1073-1087 (2018).
48. Stachowicz, A., et al. Mitochondrial Aldehyde Dehydrogenase Activation by Alda-1 Inhibits Atherosclerosis and Attenuates Hepatic Steatosis in Apolipoprotein E Knockout Mice. J. Am. Heart. Assoc. 3, e001329 (2014).
49. Zhong, W., et al. Pharmacological activation of aldehyde dehydrogenase 2 by Alda-1 reverses alcohol-induced hepatic steatosis and cell death in mice. J. Hepatol. 62, 1375-1381 (2015).
50. Pan, H., et al. Diet and health trends in Taiwan: comparison of two nutrition and health surveys from 1993-1996 and 2005-2008. Asia. Pac. J. Clin. Nutr. 20:238-50 (2011)
51. Powell, E.S., Smith-Taillie, L.P. & Popkin, M. Added sugars intake across the distribution of US children and adult consumers: 1977-2012. J. Acad. Nutr. Diet. 116, 1543-1550.e1541 (2016).
52. Rehm, C.D., Peñalvo, J.L., Afshin, A. & Mozaffarian, D. Dietary intake among US adults, 1999-2012. JAMA. 315:2542-53 (2016).
53. Sun, K.C., et al. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol. Metab. 3, 474-483 (2014).
54. Saddik, M. & Lopaschuk, G. D. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J. Biol. Chem. 266, 8162-8170 (1991).
55. Dallakyan, S. & Olson, A. J. Small-molecule library screening by docking with PyRx. Methods. Mol. Biol. 1263, 243-250 (2015).
56. Rigsby, R. E. & Parker, A. B. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol.Edu. 44, 433-437 (2016).
57. Laskowski, A. & Swindells, M. B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J Chem. Inf. Model. 51, 2778-2786 (2011).
58. Janssen, F. J., et al. Spectrophotometric Assay for Complex I of the Respiratory Chain in Tissue Samples and Cultured Fibroblasts. Clin. Chem. 53, 729-734 (2007).
59. Spinazzi, M., Casarin, A., Pertegato,V., Salviati, L. & Angelini,C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protocols 7, 1235-1246 (2012).