1. Patterson C: World Alzheimer Report 2018: The state of the art of dementia research: New frontiers. In. London: Alzheimer's Disease International; 2018.
2. Dixon Scott J, Lemberg Kathryn M, Lamprecht Michael R, Skouta R, Zaitsev Eleina M, Gleason Caroline E, Patel Darpan N, Bauer Andras J, Cantley Alexandra M, Yang Wan S et al: Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149(5):1060-1072.
3. Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ et al: Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ 2021, 28(5):1548-1562.
4. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q: Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 2017, 12:8-17.
5. Ayton S, Portbury S, Kalinowski P, Agarwal P, Diouf I, Schneider JA, Morris MC, Bush AI: Regional brain iron associated with deterioration in Alzheimer's disease: A large cohort study and theoretical significance. Alzheimer's & dementia : the journal of the Alzheimer's Association 2021, 17(7):1244-1256.
6. Jiao S-S, Yao X-Q, Liu Y-H, Wang Q-H, Zeng F, Lu J-J, Liu J, Zhu C, Shen L-L, Liu C-H et al: Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits. Proceedings of the National Academy of Sciences 2015, 112(16):5225-5230.
7. Wang JH, Lei X, Cheng XR, Zhang XR, Liu G, Cheng JP, Xu YR, Zeng J, Zhou WX, Zhang YX: LW-AFC, a new formula derived from Liuwei Dihuang decoction, ameliorates behavioral and pathological deterioration via modulating the neuroendocrine-immune system in PrP-hAbetaPPswe/PS1(DeltaE9) transgenic mice. Alzheimers Res Ther 2016, 8(1):57.
8. Pan RY MJ, Kong XX, Wang XF, Li SS, Qi XL, Yan YH, Cheng J, Liu Q, Jin W, Tan CH, Yuan Z.: Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv 2019, 5(2):eaau6328.
9. Yang W, Zhang J, Shi L, Ji S, Yang X, Zhai W, Zong H, Qian Y: Protective effects of tanshinone IIA on SH-SY5Y cells against oAbeta1-42-induced apoptosis due to prevention of endoplasmic reticulum stress. Int J Biochem Cell Biol 2019, 107:82-91.
10. Uddin MS, Kabir MT, Tewari D, Mathew B, Aleya L: Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer's disease. Sci Total Environ 2020, 700:134836.
11. Li Zhu ZX-B, Gu Juan-Hua, Zeng Yue-Qin, Li Jin-Tao.: Breviscapine exerts neuroprotective efects through multiple mechanisms in APP/PS1 transgenic mice. Molecular and Cellular Biochemistry 2020, 468.
12. Lee E, Jeong KW, Shin A, Jin B, Jnawali HN, Jun BH, Lee JY, Heo YS, Kim Y: Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway. BMB Rep 2013, 46(12):594-599.
13. Wang Z, Lan Y, Chen M, Wen C, Hu Y, Liu Z, Ye L: Eriodictyol, Not Its Glucuronide Metabolites, Attenuates Acetaminophen-Induced Hepatotoxicity. Mol Pharm 2017, 14(9):2937-2951.
14. Wang X, Deng R, Dong J, Huang L, Li J, Zhang B: Eriodictyol ameliorates lipopolysaccharide-induced acute lung injury by suppressing the inflammatory COX-2/NLRP3/NF-kappaB pathway in mice. J Biochem Mol Toxicol 2020, 34(3):e22434.
15. Bai J, Wang Y, Zhu X, Shi J: Eriodictyol inhibits high glucose-induced extracellular matrix accumulation, oxidative stress, and inflammation in human glomerular mesangial cells. Phytother Res 2019, 33(10):2775-2782.
16. He P, Yan S, Wen X, Zhang S, Liu Z, Liu X, Xiao C: Eriodictyol alleviates lipopolysaccharide-triggered oxidative stress and synaptic dysfunctions in BV-2 microglial cells and mouse brain. J Cell Biochem 2019, 120(9):14756-14770.
17. Jing X SH, Zhu X, Wei X, Ren M, Han M, Ren D, Lou H. : Eriodictyol Attenuates β-Amyloid 25-35 Peptide-Induced Oxidative Cell Death in Primary Cultured Neurons by Activation of Nrf2. Neurochem Res 2015 Jul, 40(7):1463-1471.
18. He P, Yan S, Zheng J, Gao Y, Zhang S, Liu Z, Liu X, Xiao C: Eriodictyol Attenuates LPS-Induced Neuroinflammation, Amyloidogenesis, and Cognitive Impairments via the Inhibition of NF-kappaB in Male C57BL/6J Mice and BV2 Microglial Cells. J Agric Food Chem 2018, 66(39):10205-10214.
19. Lai YJ, Zhu BL, Sun F, Luo D, Ma YL, Luo B, Tang J, Xiong MJ, Liu L, Long Y et al: Estrogen receptor alpha promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice. Aging Cell 2019, 18(4):e12961.
20. Lin K, Sze SC, Liu B, Zhang Z, Zhang Z, Zhu P, Wang Y, Deng Q, Yung KK, Zhang S: 20(S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis. J Ginseng Res 2021, 45(2):325-333.
21. Ding B, Lin C, Liu Q, He Y, Ruganzu JB, Jin H, Peng X, Ji S, Ma Y, Yang W: Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-kappaB signaling pathway in vivo and in vitro. J Neuroinflammation 2020, 17(1):302.
22. Rahman SO, Panda BP, Parvez S, Kaundal M, Hussain S, Akhtar M, Najmi AK: Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Abeta peptides in animal model of Alzheimer's disease. Biomed Pharmacother 2019, 110:47-58.
23. Jahanshahi M, Khalili M, Margedari A: Naringin Chelates Excessive Iron and Prevents the Formation of Amyloid-Beta Plaques in the Hippocampus of Iron-Overloaded Mice. Front Pharmacol 2021, 12:651156.
24. Streit WJ, Braak H, Del Tredici K, Leyh J, Lier J, Khoshbouei H, Eisenloffel C, Muller W, Bechmann I: Microglial activation occurs late during preclinical Alzheimer's disease. Glia 2018, 66(12):2550-2562.
25. Sarlak Z, Moazzami M, Attarzadeh Hosseini M, Gharakhanlou R: The effects of aerobic training before and after the induction of Alzheimer's disease on ABCA1 and APOE mRNA expression and the level of soluble Abeta1-42 in the hippocampus of male Wistar rats. Iran J Basic Med Sci 2019, 22(4):399-406.
26. Hsieh CH, Hsieh HC, Shih FS, Wang PW, Yang LX, Shieh DB, Wang YC: An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 2021, 11(14):7072-7091.
27. Huynh DTN, Jin Y, Myung C-S, Heo K-S: Ginsenoside Rh1 Induces MCF-7 Cell Apoptosis and Autophagic Cell Death through ROS-Mediated Akt Signaling. Cancers 2021, 13(8).
28. Li D, Liu B, Fan Y, Liu M, Han B, Meng Y, Xu X, Song Z, Liu X, Hao Q et al: Nuciferine protects against folic acid‐induced acute kidney injury by inhibiting ferroptosis. British Journal of Pharmacology 2021, 178(5):1182-1199.
29. Prah J, Winters A, Chaudhari K, Hersh J, Liu R, Yang SH: Cholesterol sulfate alters astrocyte metabolism and provides protection against oxidative stress. Brain Res 2019, 1723:146378.
30. Ge MH, Tian H, Mao L, Li DY, Lin JQ, Hu HS, Huang SC, Zhang CJ, Mei XF: Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther 2021.
31. Yoo JM, Lee BD, Sok DE, Ma JY, Kim MR: Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells. Redox Biol 2017, 11:592-599.
32. Li W, Du Q, Li X, Zheng X, Lv F, Xi X, Huang G, Yang J, Liu S: Eriodictyol Inhibits Proliferation, Metastasis and Induces Apoptosis of Glioma Cells via PI3K/Akt/NF-κB Signaling Pathway. Frontiers in Pharmacology 2020, 11.
33. Orlandella FM, Smaldone G, Salvatore G, Vitagliano L, Cianflone A, Parasole R, Beneduce G, Menna G, Salvatore M, Mirabelli P: The lncRNA TEX41 is upregulated in pediatric B-Cells Acute Lymphoblastic Leukemia and it is necessary for leukemic cell growth. Biomark Res 2021, 9(1):54.
34. Jin HR, Du CH, Wang CZ, Yuan CS, Du W: Ginseng metabolite Protopanaxadiol induces Sestrin2 expression and AMPK activation through GCN2 and PERK. Cell Death Dis 2019, 10(4):311.
35. Qu X, Yan X, Kong C, Zhu Y, Li H, Pan D, Zhang X, Liu Y, Yin F, Qin H: c‐Myb promotes growth and metastasis of colorectal cancer through c‐fos‐induced epithelial‐mesenchymal transition. Cancer Science 2019, 110(10):3183-3196.
36. Yu S, Zhang Y, Li Q, Zhang Z, Zhao G, Xu J: CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis 2019, 10(12):949.
37. Wang Z, Sun R, Wang G, Chen Z, Li Y, Zhao Y, Liu D, Zhao H, Zhang F, Yao J et al: SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. Redox Biol 2020, 28:101343.
38. Chen D, Tavana O, Chu B, Erber L, Chen Y, Baer R, Gu W: NRF2 Is a Major Target of ARF in p53-Independent Tumor Suppression. Mol Cell 2017, 68(1):224-232 e224.
39. Liu Q, Wang K: The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biology International 2019, 43(11):1245-1256.
40. Hu Z, Zhang H, Yi B, Yang S, Liu J, Hu J, Wang J, Cao K, Zhang W: VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis 2020, 11(1):73.
41. Lei P, Bai T, Sun Y: Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Front Physiol 2019, 10:139.
42. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D: Ferroptosis: process and function. Cell Death Differ 2016, 23(3):369-379.
43. Seibt TM, Proneth B, Conrad M: Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 2019, 133:144-152.
44. Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Rådmark O, Wurst W et al: Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell metabolism 2008, 8(3):237-248.
45. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T et al: Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 2018, 172(3):409-422.e421.
46. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C: Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 2019, 133:221-233.
47. Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J: Ferroptosis and Its Role in Diverse Brain Diseases. Mol Neurobiol 2019, 56(7):4880-4893.
48. Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, Marder SR: In vivo evaluation of brain iron in Alzheimer's disease and normal subjects using MRI. Biological psychiatry 1994, 35(7):480-487.
49. Bartzokis G, Tishler TA: MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer's and Huntingon's disease. Cellular and molecular biology (Noisy-le-Grand, France) 2000, 46(4):821-833.
50. Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL: Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Annals of the New York Academy of Sciences 2004, 1012:224-236.
51. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV: MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. Neuroimage 2009, 47(2):493-500.
52. Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage 2012, 59(3):2625-2635.
53. Langkammer C, Ropele S, Pirpamer L, Fazekas F, Schmidt R: MRI for iron mapping in Alzheimer's disease. Neuro-degenerative diseases 2014, 13(2-3):189-191.
54. Ghadery C, Pirpamer L, Hofer E, Langkammer C, Petrovic K, Loitfelder M, Schwingenschuh P, Seiler S, Duering M, Jouvent E et al: R2* mapping for brain iron: associations with cognition in normal aging. Neurobiol Aging 2015, 36(2):925-932.
55. Tao Y, Wang Y, Rogers JT, Wang F: Perturbed iron distribution in Alzheimer's disease serum, cerebrospinal fluid, and selected brain regions: a systematic review and meta-analysis. J Alzheimers Dis 2014, 42(2):679-690.
56. Caldwell JH, Klevanski M, Saar M, Müller UC: Roles of the amyloid precursor protein family in the peripheral nervous system. Mechanisms of development 2013, 130(6-8):433-446.
57. Huang YA, Zhou B, Wernig M, Sudhof TC: ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Abeta Secretion. Cell 2017, 168(3):427-441 e421.
58. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L: The role of iron in brain ageing and neurodegenerative disorders. The Lancet Neurology 2014, 13(10):1045-1060.
59. McCarthy RC, Park YH, Kosman DJ: sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep 2014, 15(7):809-815.
60. Wan L, Nie G, Zhang J, Zhao B: Overexpression of human wild-type amyloid-β protein precursor decreases the iron content and increases the oxidative stress of neuroblastoma SH-SY5Y cells. J Alzheimers Dis 2012, 30(3):523-530.
61. Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA: beta-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 2014, 9(12):e114174.
62. Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK: Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2018, 341:154-175.
63. Chen L, Hambright WS, Na R, Ran Q: Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis. J Biol Chem 2015, 290(47):28097-28106.
64. Dodson M, Castro-Portuguez R, Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 2019, 23:101107.
65. Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR: Targeting Nrf2 to Suppress Ferroptosis and Mitochondrial Dysfunction in Neurodegeneration. Front Neurosci 2018, 12:466.
66. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016, 63(1):173-184.
67. Liu Z, Lv X, Song E, Song Y: Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol 2020, 407:115241.
68. Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017, 6(8):e371.
69. Zhao Y, Lu J, Mao A, Zhang R, Guan S: Autophagy Inhibition Plays a Protective Role in Ferroptosis Induced by Alcohol via the p62-Keap1-Nrf2 Pathway. J Agric Food Chem 2021, 69(33):9671-9683.
70. Li S, Zheng L, Zhang J, Liu X, Wu Z: Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med 2021, 162:435-449.
71. Lv P, Yu J, Xu X, Lu T, Xu F: Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells. J Cell Biochem 2019, 120(4):5644-5651.
72. Jing X, Shi H, Zhu X, Wei X, Ren M, Han M, Ren D, Lou H: Eriodictyol Attenuates β-Amyloid 25-35 Peptide-Induced Oxidative Cell Death in Primary Cultured Neurons by Activation of Nrf2. Neurochemical research 2015, 40(7):1463-1471.
73. Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, Demay MB: Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proceedings of the National Academy of Sciences of the United States of America 1997, 94(18):9831-9835.
74. Chen L, Yang R, Qiao W, Zhang W, Chen J, Mao L, Goltzman D, Miao D: 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell 2019, 18(3):e12951.