[1] N. Zhu et al., ‘A Novel Coronavirus from Patients with Pneumonia in China, 2019’, N. Engl. J. Med., vol. 382, no. 8, pp. 727–733, 20 2020, doi: 10.1056/NEJMoa2001017.
[2] F. Wu et al., ‘A new coronavirus associated with human respiratory disease in China’, Nature, vol. 579, no. 7798, pp. 265–269, 2020, doi: 10.1038/s41586-020-2008-3.
[3] T. N. C. P. E. R. E. Team, ‘The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020’, China CDC Wkly., vol. 2, no. 8, pp. 113–122, Feb. 2020, doi: 10.46234/ccdcw2020.032.
[4] C. Huang et al., ‘Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China’, Lancet Lond. Engl., vol. 395, no. 10223, pp. 497–506, 15 2020, doi: 10.1016/S0140-6736(20)30183-5.
[5] null Swiss Academy Of Medical Sciences, ‘COVID-19 pandemic: triage for intensive-care treatment under resource scarcity’, Swiss Med. Wkly., vol. 150, p. w20229, 23 2020, doi: 10.4414/smw.2020.20229.
[6] R. R. Ayebare, R. Flick, S. Okware, B. Bodo, and M. Lamorde, ‘Adoption of COVID-19 triage strategies for low-income settings’, Lancet Respir. Med., vol. 8, no. 4, p. e22, 2020, doi: 10.1016/S2213-2600(20)30114-4.
[7] F. Eckel, F. Küsters, B. Drossel, M. Konert, H. Mattes, and S. Schopf, ‘VariplexTM test system fails to reliably detect SARS-CoV-2 directly from respiratory samples without RNA extraction’, Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol., Jul. 2020, doi: 10.1007/s10096-020-03983-9.
[8] B. E. Fan et al., ‘Hematologic parameters in patients with COVID-19 infection’, Am. J. Hematol., vol. 95, no. 6, pp. E131–E134, 2020, doi: 10.1002/ajh.25774.
[9] Q. Ye, B. Wang, and J. Mao, ‘The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19’, J. Infect., vol. 80, no. 6, pp. 607–613, 2020, doi: 10.1016/j.jinf.2020.03.037.
[10] N. A. Obuchowski and J. A. Bullen, ‘Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine’, Phys. Med. Biol., vol. 63, no. 7, p. 07TR01, 29 2018, doi: 10.1088/1361-6560/aab4b1.
[11] E. Leushuis et al., ‘Prediction models in reproductive medicine: a critical appraisal’, Hum. Reprod. Update, vol. 15, no. 5, pp. 537–552, Oct. 2009, doi: 10.1093/humupd/dmp013.
[12] J. N. Mandrekar, ‘Receiver operating characteristic curve in diagnostic test assessment’, J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer, vol. 5, no. 9, pp. 1315–1316, Sep. 2010, doi: 10.1097/JTO.0b013e3181ec173d.
[13] F. Zhou et al., ‘Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study’, Lancet Lond. Engl., vol. 395, no. 10229, pp. 1054–1062, 28 2020, doi: 10.1016/S0140-6736(20)30566-3.
[14] B. M. Henry et al., ‘Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis’, Am. J. Emerg. Med., vol. 38, no. 9, pp. 1722–1726, May 2020, doi: 10.1016/j.ajem.2020.05.073.
[15] C. Gregoriano et al., ‘Characteristics, predictors and outcomes among 99 patients hospitalised with COVID-19 in a tertiary care centre in Switzerland: an observational analysis’, Swiss Med. Wkly., vol. 150, p. w20316, 13 2020, doi: 10.4414/smw.2020.20316.
[16] D. Ferrari, A. Motta, M. Strollo, G. Banfi, and M. Locatelli, ‘Routine blood tests as a potential diagnostic tool for COVID-19’, Clin. Chem. Lab. Med., vol. 58, no. 7, pp. 1095–1099, 25 2020, doi: 10.1515/cclm-2020-0398.
[17] D. Brinati, A. Campagner, D. Ferrari, M. Locatelli, G. Banfi, and F. Cabitza, ‘Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study’, J. Med. Syst., vol. 44, no. 8, p. 135, Jul. 2020, doi: 10.1007/s10916-020-01597-4.
[18] A.-P. Yang, J.-P. Liu, W.-Q. Tao, and H.-M. Li, ‘The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients’, Int. Immunopharmacol., vol. 84, p. 106504, Jul. 2020, doi: 10.1016/j.intimp.2020.106504.
[19] J. Liu et al., ‘Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage’, J. Transl. Med., vol. 18, no. 1, p. 206, 20 2020, doi: 10.1186/s12967-020-02374-0.
[20] E. Terpos et al., ‘Hematological findings and complications of COVID-19’, Am. J. Hematol., vol. 95, no. 7, pp. 834–847, 2020, doi: 10.1002/ajh.25829.
[21] Y. Okugawa et al., ‘Lymphocyte-C-reactive Protein Ratio as Promising New Marker for Predicting Surgical and Oncological Outcomes in Colorectal Cancer’, Ann. Surg., Feb. 2019, doi: 10.1097/SLA.0000000000003239.
[22] L.-H. Lu et al., ‘Lymphocyte-C-reactive protein ratio as a novel prognostic index in intrahepatic cholangiocarcinoma: A multicentre cohort study’, Liver Int. Off. J. Int. Assoc. Study Liver, Jun. 2020, doi: 10.1111/liv.14567.
[23] M. Yildirim, F. Dasiran, Y. S. Angin, and I. Okan, ‘Lymphocyte-C-reactive protein ratio: a putative predictive factor for intestinal ischemia in strangulated abdominal wall hernias’, Hernia J. Hernias Abdom. Wall Surg., Mar. 2020, doi: 10.1007/s10029-020-02174-x.
[24] M. Prokop et al., ‘CO-RADS - A categorical CT assessment scheme for patients with suspected COVID-19: definition and evaluation’, Radiology, p. 201473, Apr. 2020, doi: 10.1148/radiol.2020201473.
[25] C. Miao et al., ‘Early chest computed tomography to diagnose COVID-19 from suspected patients: A multicenter retrospective study’, Am. J. Emerg. Med., Apr. 2020, doi: 10.1016/j.ajem.2020.04.051.