1 Tuder RM, Yun JH, Bhunia A, et al. Hypoxia and chronic lung disease. J. Mol. Med. 2007;85:1317–24. doi:10.1007/s00109-007-0280-4
2 Fröhlich S, Boylan J, Mcloughlin P. Hypoxia-induced inflammation in the lung: A potential therapeutic target in acute lung injury? Am. J. Respir. Cell Mol. Biol. 2013;48:271–9. doi:10.1165/rcmb.2012-0137TR
3 Palazon A, Goldrath AW, Nizet V, et al. HIF transcription factors, inflammation, and immunity. Immunity 2014;41:518–28. doi:10.1016/j.immuni.2014.09.008
4 Watts ER, Walmsley SR. Inflammation and Hypoxia: HIF and PHD Isoform Selectivity. Trends Mol. Med. 2019;25:33–46. doi:10.1016/j.molmed.2018.10.006
5 Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N. Engl. J. Med. 2011;364:656–65. doi:10.1056/NEJMra0910283
6 Lang M, Som A, Mendoza DP, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect. Dis. 2020. doi:10.1016/S1473-3099(20)30367-4
7 Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27:1451–4. doi:10.1038/s41418-020-0530-3
8 Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 2020;55. doi:10.1183/13993003.00607-2020
9 Codo AC, Davanzo GG, Monteiro L de B, et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab 2020;32:437-446.e5. doi:10.1016/j.cmet.2020.07.007
10 Gibellini L, De Biasi S, Paolini A, et al. Altered bioenergetics and mitochondrial dysfunction of monocytes in patients with COVID‐19 pneumonia. EMBO Mol Med 2020;12. doi:10.15252/emmm.202013001
11 Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 2020;20:363–74. doi:10.1038/s41577-020-0311-8
12 Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020;383:120–8. doi:10.1056/NEJMoa2015432
13 Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir. Med. 2020;8. doi:10.1016/S2213-2600(20)30216-2
14 Mojiri A, Nakhaii-Nejad M, Phan WL, et al. Hypoxia results in upregulation and de novo activation of von willebrand factor expression in lung endothelial cells. Arterioscler Thromb Vasc Biol 2013;33:1329–38. doi:10.1161/ATVBAHA.113.301359
15 Aggarwal S, Gheware A, Agrawal A, et al. Combined genetic effects of EGLN1 and VWF modulate thrombotic outcome in hypoxia revealed by Ayurgenomics approach. J Transl Med 2015;13:184. doi:10.1186/s12967-015-0542-9
16 Gheware A, Panda L, Khanna K, et al. Adhatoda Vasica ameliorates cellular hypoxia dependent mitochondrial dysfunction in acute and severe asthmatic mice. bioRxiv 2020;:2020.04.01.019430. doi:10.1101/2020.04.01.019430
17 P. S. Charaka Samhita: text with english translation. Varanasi, India: : Chaukambha Orientalia Publisher 1981.
18 Prasher R, Pandey D, De S, et al. Standardization of Vasa Ghrta and its extract form and their comparative Pharmaco-Clinical study with special reference to Swasa Roga. Ayu 1999;6.
19 Das S, Kumar M, Negi V, et al. MicroRNA-326 regulates profibrotic functions of transforming growth factor-β in pulmonary fibrosis. Am J Respir Cell Mol Biol 2014;50:882–92. doi:10.1165/rcmb.2013-0195OC
20 Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42. doi:10.1093/nar/28.1.235
21 Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46:W296–303. doi:10.1093/nar/gky427
22 Yang J, Yan R, Roy A, et al. The I-TASSER suite: Protein structure and function prediction. Nat. Methods. 2014;12:7–8. doi:10.1038/nmeth.3213
23 Tian W, Chen C, Lei X, et al. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res 2018;46:W363–7. doi:10.1093/nar/gky473
24 Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177–96. doi:10.1021/jm051256o
25 Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2009;31:NA-NA. doi:10.1002/jcc.21334
26 ASTM E1052 - 20 Standard Practice to Assess the Activity of Microbicides against Viruses in Suspension. https://www.astm.org/Standards/E1052.htm (accessed 18 Jan 2021).
27 Caly L, Druce JD, Catton MG, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020;178:104787. doi:10.1016/j.antiviral.2020.104787
28 Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect 2020;9:761–70. doi:10.1080/22221751.2020.1747363
29 Gardinassi LG, Souza COS, Sales-Campos H, et al. Immune and Metabolic Signatures of COVID-19 Revealed by Transcriptomics Data Reuse. Front Immunol 2020;11:1636. doi:10.3389/fimmu.2020.01636
30 Wu M, Chen Y, Xia H, et al. Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proc Natl Acad Sci U S A 2020;117:28336–43. doi:10.1073/pnas.2018030117
31 Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020;:1–13. doi:10.1038/s41586-020-2286-9
32 Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med Published Online First: 17 July 2020. doi:10.1056/nejmoa2021436
33 Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA - J Am Med Assoc 2020;324:1307–16. doi:10.1001/jama.2020.17021
34 Abu Esba LC, Alqahtani RA, Thomas A, et al. Ibuprofen and NSAID Use in COVID-19 Infected Patients Is Not Associated with Worse Outcomes: A Prospective Cohort Study. Infect Dis Ther 2020;:1. doi:10.1007/s40121-020-00363-w
35 Claeson UP, Malmfors T, Wikman G, et al. Adhatoda vasica: A critical review of ethnopharmacological and toxicological data. J. Ethnopharmacol. 2000;72:1–20. doi:10.1016/S0378-8741(00)00225-7
36 AMIN AH, MEHTA DR. A Bronchodilator Alkaloid (Vasicinone) from Adhatoda vasica Nees. Nature 1959;184:1317–1317. doi:10.1038/1841317a0
37 McMahon S, Charbonneau M, Grandmont S, et al. Transforming growth factor β1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 2006;281:24171–81. doi:10.1074/jbc.M604507200
38 Romero CR, Herzig DS, Etogo A, et al. The role of interferon-γ in the pathogenesis of acute intra-abdominal sepsis. J Leukoc Biol 2010;88:725–35. doi:10.1189/jlb.0509307
39 Leentjens J, Gresnigt MS, van de Veerdonk FL, et al. Adjuvant interferon-gamma immunotherapy in a patient with progressive cerebral Nocardia abscesses. Int J Infect Dis 2017;59:25–8. doi:10.1016/j.ijid.2017.03.013
40 Payen D, Faivre V, Miatello J, et al. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect Dis 2019;19. doi:10.1186/s12879-019-4526-x
41 Wang L, Wang Y, Ye D, et al. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents 2020;55:105948. doi:10.1016/j.ijantimicag.2020.105948