1. Cucinotta, D. & Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed 91, 157-160 (2020).
2. Hu, B., Guo, H., Zhou, P. & Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 19, 141-154 (2021).
3. Berlin, D.A., Gulick, R.M. & Martinez, F.J. Severe Covid-19. N Engl J Med (2020).
4. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062 (2020).
5. Richardson, S. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA (2020).
6. Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463-469 (2020).
7. Henderson, L.A. et al. On the Alert for Cytokine Storm: Immunopathology in COVID-19. Arthritis & rheumatology (2020).
8. Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat Med 27, 601-615 (2021).
9. Feldstein, L.R. et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med 383, 334-346 (2020).
10. Lee, P.Y. et al. Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J Clin Invest 130, 5942-5950 (2020).
11. Rostad, C.A. et al. Quantitative SARS-CoV-2 Serology in Children With Multisystem Inflammatory Syndrome (MIS-C). Pediatrics 146 (2020).
12. Dufort, E.M. et al. Multisystem Inflammatory Syndrome in Children in New York State. N Engl J Med 383, 347-358 (2020).
13. Feldstein, L.R. et al. Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19. JAMA 325, 1074-1087 (2021).
14. Yonker, L.M. et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J Clin Invest 131 (2021).
15. Porritt, R.A. et al. The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children. J Clin Invest (2021).
16. Consiglio, C.R. et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell 183, 968-981 e967 (2020).
17. Ramaswamy, A. et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity 54, 1083-1095 e1087 (2021).
18. Gruber, C.N. et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell 183, 982-995 e914 (2020).
19. Carter, M.J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat Med 26, 1701-1707 (2020).
20. Vella, L.A. et al. Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19. Sci Immunol 6 (2021).
21. Petrara, M.R. et al. Asymptomatic and Mild SARS-CoV-2 Infections Elicit Lower Immune Activation and Higher Specific Neutralizing Antibodies in Children Than in Adults. Front Immunol 12, 741796 (2021).
22. Rodriguez-Smith, J.J. et al. Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: a cohort study. Lancet Rheumatol 3, e574-e584 (2021).
23. Esteve-Sole, A. et al. Similarities and differences between the immunopathogenesis of COVID-19-related pediatric multisystem inflammatory syndrome and Kawasaki disease. J Clin Invest 131 (2021).
24. Diorio, C. et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest 130, 5967-5975 (2020).
25. Sancho-Shimizu, V. et al. SARS-CoV-2-related MIS-C: A key to the viral and genetic causes of Kawasaki disease? J Exp Med 218 (2021).
26. Chou, J. et al. Mechanisms underlying genetic susceptibility to multisystem inflammatory syndrome in children (MIS-C). J Allergy Clin Immunol 148, 732-738 e731 (2021).
27. Vanderbeck, A. & Maillard, I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 109, 535-548 (2021).
28. Amsen, D., Helbig, C. & Backer, R.A. Notch in T Cell Differentiation: All Things Considered. Trends Immunol 36, 802-814 (2015).
29. Radtke, F., Fasnacht, N. & Macdonald, H.R. Notch signaling in the immune system. Immunity 32, 14-27 (2010).
30. Harb, H. et al. Notch4 signaling limits regulatory T-cell-mediated tissue repair and promotes severe lung inflammation in viral infections. Immunity 54, 1186-1199 e1187 (2021).
31. Xia, M., Harb, H., Saffari, A., Sioutas, C. & Chatila, T.A. A Jagged 1-Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J Allergy Clin Immunol 142, 1243-1256 e1217 (2018).
32. Harb, H. et al. A regulatory T cell Notch4-GDF15 axis licenses tissue inflammation in asthma. Nat Immunol 21, 1359-1370 (2020).
33. Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in COVID-19. Nature 591, 92-98 (2021).
34. Charbonnier, L.M., Wang, S., Georgiev, P., Sefik, E. & Chatila, T.A. Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat Immunol 16, 1162-1173 (2015).
35. Magee, C.N. et al. Notch-1 Inhibition Promotes Immune Regulation in Transplantation Via Regulatory T Cell-Dependent Mechanisms. Circulation 140, 846-863 (2019).
36. McGill, M.A. & McGlade, C.J. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 278, 23196-23203 (2003).
37. Ballet, R. et al. A CD22-Shp1 phosphatase axis controls integrin beta7 display and B cell function in mucosal immunity. Nat Immunol 22, 381-390 (2021).
38. Clark, E.A. & Giltiay, N.V. CD22: A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity. Frontiers in immunology 9, 2235 (2018).
39. Whittaker, E. et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA 324, 259-269 (2020).
40. Verdoni, L. et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 395, 1771-1778 (2020).
41. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587 e3529 (2021).
42. Rockowitz, S. et al. Children's rare disease cohorts: an integrative research and clinical genomics initiative. NPJ Genom Med 5, 29 (2020).
43. Schmitz-Abe, K. et al. Unique bioinformatic approach and comprehensive reanalysis improve diagnostic yield of clinical exomes. Eur J Hum Genet 27, 1398-1405 (2019).
44. Son, M.B.F. et al. Multisystem Inflammatory Syndrome in Children - Initial Therapy and Outcomes. N Engl J Med 385, 23-34 (2021).
45. McGill, M.A., Dho, S.E., Weinmaster, G. & McGlade, C.J. Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem 284, 26427-26438 (2009).
46. Frise, E., Knoblich, J.A., Younger-Shepherd, S., Jan, L.Y. & Jan, Y.N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage. Proc Natl Acad Sci U S A 93, 11925-11932 (1996).
47. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46, 310-315 (2014).
48. Broggi, A. et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science 369, 706-712 (2020).
49. Iwasaki, A. & Pillai, P.S. Innate immunity to influenza virus infection. Nat Rev Immunol 14, 315-328 (2014).
50. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105 (2006).
51. du Pre, M.F. et al. CD62L(neg)CD38(+) expression on circulating CD4(+) T cells identifies mucosally differentiated cells in protein fed mice and in human celiac disease patients and controls. Am J Gastroenterol 106, 1147-1159 (2011).
52. van Leeuwen, M.A. et al. Changes in natural Foxp3(+)Treg but not mucosally-imprinted CD62L(neg)CD38(+)Foxp3(+)Treg in the circulation of celiac disease patients. PLoS One 8, e68432 (2013).
53. Poe, J.C., Fujimoto, M., Jansen, P.J., Miller, A.S. & Tedder, T.F. CD22 forms a quaternary complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J Biol Chem 275, 17420-17427 (2000).
54. Alessi, D.R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7, 261-269 (1997).
55. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499, 485-490 (2013).
56. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101 (2005).
57. Payne, A.B. et al. Incidence of Multisystem Inflammatory Syndrome in Children Among US Persons Infected With SARS-CoV-2. JAMA Netw Open 4, e2116420 (2021).