1. Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R: Fungal effectors and plant susceptibility. Annu Rev Plant Biol 2015, 66:513–545.
2. Lindeberg M, Cunnac S, Collmer A: Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 2012, 20(4):199–208.
3. Bozkurt TO, Schornack S, Banfield MJ, Kamoun S: Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol 2012, 15(4):483–492.
4. Kamoun S: A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 2006, 44:41–60.
5. Jones JD, Dangl JL: The plant immune system. Nature 2006, 444(7117):323–329.
6. Zipfel C: Plant pattern-recognition receptors. Trends in Immunology 2014, 35(7):345–351.
7. Felix G, Duran JD, Volko S, Boller T: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 1999, 18(3):265–276.
8. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 2004, 16(12):3496–3507.
9. Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Gotz F, Glawischnig E, Lee J, Felix G et al: Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. Journal of Biological Chemistry 2007, 282(44):32338–32348.
10. Ron M, Avni A: The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 2004, 16(6):1604–1615.
11. Felix G, Regenass M, Boller T: Specific perception of subnanomolar concentrations of chitin fragments by tomato cells - induction of extracellular alkalinization, changes in protein-phosphorylation, and establishment of a refractory state. Plant J 1993, 4(2):307–316.
12. Zhang LS, Kars I, Essenstam B, Liebrand TWH, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JAL: Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 2014, 164(1):352–364.
13. Hein I, Gilroy EM, Armstrong MR, Birch PR: The zig-zag-zig in oomycete-plant interactions. Mol Plant Pathol 2009, 10(4):547–562.
14. Ma Z, Song T, Zhu L, Ye W, Wang Y, Shao Y, Dong S, Zhang Z, Dou D, Zheng X et al: A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 2015, 27(7):2057–2072.
15. Wang Y, Xu YP, Sun YJ, Wang HB, Qi JM, Wan BW, Ye WW, Lin YC, Shao YY, Dong SM et al: Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat Commun 2018, 9:594.
16. Bailey BA: Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 1995, 85(10):1250–1255.
17. Gijzen M, Nurnberger T: Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 2006, 67(16):1800–1807.
18. Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nurnberger T: NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 2002, 32(3):375–390.
19. Ottmann C, Luberacki B, Kufner I, Koch W, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Seitz HU et al: A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci U S A 2009, 106(25):10359–10364.
20. Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T et al: Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 2006, 18(12):3721–3744.
21. Qutob D, Kamoun S, Gijzen M: Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J 2002, 32(3):361–373.
22. Bohm H, Albert I, Oome S, Raaymakers TM, Van den Ackerveken G, Nurnberger T: A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog 2014, 10(11):e1004491.
23. Oome S, Raaymakers TM, Cabral A, Samwel S, Bohm H, Albert I, Nurnberger T, Van den Ackerveken G: Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci U S A 2014.
24. Zhou BJ, Jia PS, Gao F, Guo HS: Molecular characterization and functional analysis of a necrosis- and ethylene-Inducing, protein-encoding gene family from Verticillium dahliae. Mol Plant Microbe Interact 2012, 25(7):964–975.
25. Dong S, Kong G, Qutob D, Yu X, Tang J, Kang J, Dai T, Wang H, Gijzen M, Wang Y: The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Mol Plant Microbe Interact 2012, 25(7):896–909.
26. Cabral A, Oome S, Sander N, Kufner I, Nurnberger T, Van den Ackerveken G: Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region. Mol Plant Microbe Interact 2012, 25(5):697–708.
27. Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, Hacquard S, Stuber K, Will I, Schmalenbach W et al: Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 2012, 8(4).
28. Oome S, Van den Ackerveken G: Comparative and functional analysis of the widely occurring family of Nep1-like proteins. Mol Plant Microbe Interact 2014, 27(10):1081–1094.
29. Van den Ackerveken G: How plants differ in toxin-sensitivity. Science 2017, 358(6369):1383–1384.
30. Lenarcic T, Albert I, Bohm H, Hodnik V, Pirc K, Zavec AB, Podobnik M, Pahovnik D, Zagar E, Pruitt R et al: Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 2017, 358(6369):1431–1434.
31. Chen XR, Huang SX, Zhang Y, Sheng GL, Li YP, Zhu F: Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Molecular Genetics and Genomics 2018, 293(4):931–943.
32. Motteram J, Kufner I, Deller S, Brunner F, Hammond-Kosack KE, Nurnberger T, Rudd JJ: Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola. Mol Plant Microbe Interact 2009, 22(7):790–799.
33. Santhanam P, van Esse HP, Albert I, Faino L, Nurnberger T, Thomma BPHJ: Evidence for functional diversification within a fungal NEP1-like protein family. Mol Plant Microbe Interact 2013, 26(3):278–286.
34. Fang YL, Peng YL, Fan J: The Nep1-like protein family of Magnaporthe oryzae is dispensable for the infection of rice plants. Scientific Reports 2017, 7.
35. Zhang Y, Zhang K, Fang A, Han Y, Yang J, Xue M, Bao J, Hu D, Zhou B, Sun X et al: Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat Commun 2014, 5:3849.
36. Song JH, Wei W, Lv B, Lin Y, Yin WX, Peng YL, Schnabel G, Huang JB, Jiang DH, Luo CX: Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary. Environmental microbiology 2016, 18(11):3840–3849.
37. Cuesta Arenas Y, Kalkman ERIC, Schouten A, Dieho M, Vredenbregt P, Uwumukiza B, Osés Ruiz M, van Kan JAL: Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea. Physiological and Molecular Plant Pathology 2010, 74(5–6):376–386.
38. Kanneganti TD, Huitema E, Cakir C, Kamoun S: Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nep1-like protein PiNPP1.1 and INF1 elicitin. Mol Plant Microbe Interact 2006, 19(8):854–863.
39. Letunic I, Bork P: 20 years of the SMART protein domain annotation resource. Nucleic Acids Research 2017, 46(D1):D493-D496.
40. Gietz RD, Schiestl RH: Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols 2007, 2(1):38–41.
41. Yin W, Wang Y, Chen T, Lin Y, Luo C: Functional evaluation of the signal peptides of secreted proteins. Bio-protocol 2018, 8(9):e2839.