1 Romagnani, L. et al. Dynamics of electric fields driving the laser acceleration of multi-MeV protons. Phys. Rev. Lett.95, 195001 (2005).
2 Bulanov, S. V., Esirkepov, T. Z., Khoroshkov, V. S., Kuznetsov, A. V. & Pegorarod, F. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240-270 (2002).
3 Roth, M. et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett.86, 436-439 (2001).
4 Remington, B. A. High energy density laboratory astrophysics. Plasma Phys. Control. Fusion47, A191-A203 (2005).
5 Wagner, F. et al. Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH2 Targets. Phys. Rev. Lett.116, 205002 (2016).
6 Snavely, R. A. et al. Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids. Phy. Rev. Let.85, 2945 (2000).
7 Hatchett, S. P. et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas7, 2076-2082 (2000).
8 Higginson, A. et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun.9, 724 (2018).
9 Ogura, K. et al. Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system. Opt. Lett.37, 2868-2870 (2012).
10 Ziegler, T. et al. Proton beam quality enhancement by spectral phase control of a PW-class laser system. Sci. Rep.11, 7338 (2021).
11 Green, J. S. et al. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions. Appl. Phys. Lett.104, 214101 (2014).
12 Mackinnon, A. J. et al. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett.88, 215006 (2002).
13 Sorokovikova, A. et al. Generation of Superponderomotive Electrons in Multipicosecond Interactions of Kilojoule Laser Beams with Solid-Density Plasmas. Phys. Rev. Lett.116, 155001 (2016).
14 Iwata, N., Kojima, S., Sentoku, Y., Hata, M. & Mima, K. Plasma density limits for hole boring by intense laser pulses. Nat. Commun.9, 623 (2018).
15 Brenner, C. M. et al. High energy conversion efficiency in laserproton acceleration by controlling laserenergy deposition onto thin foil targets. Appl. Phys. Lett.104, 081123 (2014).
16 Nishiuchi, M. et al. Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse. Phys. Plasmas15, 053104 (2008).
17 Sentoku, Y., Cowan, T. E., Kemp, A. & Ruhl, H. High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas10, 2009-2015 (2003).
18 Bin, J. H. et al. Enhanced Laser-Driven Ion Acceleration by Superponderomotive Electrons Generated from Near-Critical-Density Plasma. Phys. Rev. Lett.120, 074801 (2018).
19 Ma, W. J. et al. Laser Acceleration of Highly Energetic Carbon Ions Using a Double-Layer Target Composed of Slightly Underdense Plasma and Ultrathin Foil. Phys. Rev. Lett.122, 014803 (2019).
20 Margarone, D. et al. Laser-driven proton acceleration enhancement by nanostructured foils. Phys. Rev. Lett.109, 234801 (2012).
21 Ceccotti, T. et al. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett.111, 185001 (2013).
22 Ji, L. L., Snyder, J., Pukhov, A., Freeman, R. R. & Akli, K. U. Towards manipulating relativistic laser pulses with micro-tube plasma lenses. Sci. Rep.6, 23256 (2016).
23 Floquet, V. et al. Micro-sphere layered targets efficiency in laser driven proton acceleration. J. Appl. Phys.114, 083305 (2013)..
24 Blanco, M., Flores-Arias, M. T., Ruiz, C. & Vranic, M. Table-top laser-based proton acceleration in nanostructured targets. New J. Phys.19, 033004 (2017).
25 Khaghani, D. et al. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy. Sci. Rep.7, 11366 (2017).
26 Dozières, M. et al. Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency. Plasma Phys. Control. Fusion61, 065016(8pp) (2019).
27 Bailly-Grandvaux, M. et al. Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses. Phys. Rev. E102, 021201(R) (2020).
28 Vallieres, S. et al. Enhanced laser-driven proton acceleration using nanowire targets. Sci. Rep.11, 2226 (2021).
29 Jiang, S. et al. Microengineering Laser Plasma Interactions at Relativistic Intensities. Phys. Rev. Lett. 116, 085002 (2016).
30 Snyder, J. et al. Relativistic laser driven electron accelerator using micro-channel plasma targets. Phys. Plasmas26, 033110 (2019).
31 Moreau, A. et al. Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities. Plasma Phys. Control. Fusion62, 014013 (9pp) (2020).
32 Shou, Y. et al. High-efficiency water-window x-ray generation from nanowire array targets irradiated with femtosecond laser pulses. Opt. Express29, 5427-5436 (2021).
33 Sedov, M. V. et al. Features of the generation of fast particles from microstructured targets irradiated by high intensity, picosecond laser pulses. Laser and Particle Beams37, 176-183 (2019).
34 Maruo, S. & Fourkas, J. T. Recent progress in multiphoton microfabrication. Laser & Photon. Rev.2, 100-111 (2008).
35 Yi, L., Pukhov, A., Luu-Thanh, P. & Shen, B. Bright X-Ray Source from a Laser-Driven Microplasma Waveguide. Phys. Rev. Lett.116, 115001 (2016).
36 Yi, L. & Fulop, T. Coherent Diffraction Radiation of Relativistic Terahertz Pulses from a Laser-Driven Microplasma Waveguide. Phys. Rev. Lett.123, 094801 (2019).
37 iang, S. et al. Enhancing positron production using front surface target structures. Appl. Phys. Lett.118, 094101 (2021).
38 Nanoscribe. https://www.nanoscribe.com/en/.
39 Lu, X., Zhang, H., Li, J. & Leng, Y. Reducing temporal pedestal in a Ti:sapphire chirped-pulse amplification system by using a stretcher based on two concave mirrors. Opt. Lett.46, 5320 (2021).
40 Gizzi, L. A. et al. Intense proton acceleration in ultrarelativistic interaction with nanochannels. Phys. Rev. Research2, 033451 (2020).
41 Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B268, 1818 (2010).
42 Purtov, J., Verch, A., Rogin, P. & Hensel, R. Improved development procedure to enhance the stability of microstructures created by two-photon polymerization. Microelectron. Eng.194, 45-50 (2018).
43 Kaluza, M. et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett .93, 045003 (2004).
44 Bin, J. H. et al. Absolute calibration of GafChromic film for very high flux laser driven ion beams. Rev. Sci. Instrum.90, 053301 (2019).
45 Chen, S. N. et al. Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability. Rev. Sci. Instrum.87, 073301 (2016).
46 Green, J. S. et al. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions. Appl. Phys. Lett.104, 214101 (2014).
47 Grismayer, T. & Mora, P. Influence of a finite initial ion density gradient on plasma expansion into a vacuum. Phys. Plasmas13, 032103 (2006).
48 Fryxell, B. et al. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. The Astrophys. J. Supplement Series131, 273 (2000).
49 Arber, T. D. et al. Contemporary particle-in-cell approach to laser plasma modelling. Plasma Phys. Control. Fusion 57,113001 (2015).
50 Pukhov, A., Sheng, Z. M. & Meyer-ter-Vehn, J. Particle acceleration in relativistic laser channels. Phys. Plasmas6, 2847-2854 (1999).
51 Ji, L., Jiang, S., Pukhov, A., Freeman, R. & Akli, K. Exploring novel target structures for manipulating relativistic laser–plasma interaction. High Power Laser Sci. Eng.5, e14 (2017).