1. Kleinpenning, F., Steigenberger, B., Wu, W. & Heck, A. J. R. Fishing for newly synthesized proteins with phosphonate-handles. Nat. Commun. 11, 3244 (2020).
2. Tjalsma, H., Bolhuis, A., Jongbloed, J. D. H., Bron, S. & van Dijl, J. M. Signal Peptide-Dependent Protein Transport in Bacillus subtilis : a Genome-Based Survey of the Secretome. Microbiol. Mol. Biol. Rev. 64, 515–547 (2000).
3. McCotter, S. W., Horianopoulos, L. C. & Kronstad, J. W. Regulation of the fungal secretome. Curr. Genet. 62, 533–545 (2016).
4. Mukherjee, P. & Mani, S. Methodologies to decipher the cell secretome. Biochim. Biophys. Acta - Proteins Proteomics 1834, 2226–2232 (2013).
5. Ibrahim, N. et al. Wound Healing Properties of Selected Natural Products. Int. J. Environ. Res. Public Health 15, 2360 (2018).
6. Harper, D., Young, A. & McNaught, C.-E. The physiology of wound healing. Surg. 32, 445–450 (2014).
7. Funel, N. et al. Triticum vulgare Extract Modulates Protein-Kinase B and Matrix Metalloproteinases 9 Protein Expression in BV-2 Cells: Bioactivity on Inflammatory Pathway Associated with Molecular Mechanism Wound Healing. Mediators Inflamm. 2020, 1–13 (2020).
8. Romanelli, M. et al. Clinical evaluation of the efficacy and safety of a medical device in various forms containing Triticum vulgare for the treatment of venous leg ulcers – a randomized pilot study. Drug Des. Devel. Ther. 9, 2787 (2015).
9. D’Agostino, A. et al. Molecular Mechanisms at the Basis of Pharmaceutical Grade Triticum vulgare Extract Efficacy in Prompting Keratinocytes Healing. Molecules 25, 431 (2020).
10. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, (2003).
11. Huang, D. W. et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–W175 (2007).
12. Szklarczyk, D. et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).
13. Belvedere, R. et al. The promising pro-healing role of the association of mesoglycan and lactoferrin on skin lesions. Eur. J. Pharm. Sci. 163, 105886 (2021).
14. Tan, I., Lai, J., Yong, J., Li, S. F. Y. & Leung, T. Chelerythrine perturbs lamellar actomyosin filaments by selective inhibition of myotonic dystrophy kinase-related Cdc42-binding kinase. FEBS Lett. 585, 1260–1268 (2011).
15. Heikkila, T. et al. Co-Crystal Structures of Inhibitors with MRCKβ, a Key Regulator of Tumor Cell Invasion. PLoS One 6, e24825 (2011).
16. Mecham, R. P. & Gibson, M. A. The microfibril-associated glycoproteins (MAGPs) and the microfibrillar niche. Matrix Biol. 47, 13–33 (2015).
17. Rosenbloom, J., Abrams, W. R. & Mecham, R. Extracellular matrix 4: The elastic fiber. FASEB J. 7, 1208–1218 (1993).
18. Wagenseil, J. E. & Mecham, R. P. New insights into elastic fiber assembly. Birth Defects Res. Part C Embryo Today Rev. 81, 229–240 (2007).
19. Zhu, S. et al. Molecular structure and function of microfibrillar‐associated proteins in skeletal and metabolic disorders and cancers. J. Cell. Physiol. 236, 41–48 (2021).
20. Ge, Q. et al. Fibulin1C peptide induces cell attachment and extracellular matrix deposition in lung fibroblasts. Sci. Rep. 5, 9496 (2015).
21. Parfenova, O. K., Kukes, V. G. & Grishin, D. V. Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines 9, 999 (2021).
22. Nauroy, P. & Nyström, A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol. Plus 6–7, 100019 (2020).
23. Klucky, B. et al. Kallikrein 6 Induces E-Cadherin Shedding and Promotes Cell Proliferation, Migration, and Invasion. Cancer Res. 67, 8198–8206 (2007).
24. Bizzarro, V. et al. Mesoglycan induces keratinocyte activation by triggering syndecan-4 pathway and the formation of the annexin A1/S100A11 complex. J. Cell. Physiol. 234, 20174–20192 (2019).
25. Berdowska, I. Cysteine proteases as disease markers. Clin. Chim. Acta 342, 41–69 (2004).
26. P, M. Wound healing--aiming for perfect skin regeneration. Science 276, 75–81 (1997).
27. Singer, A. J. & Clark, R. A. F. Cutaneous Wound Healing. N. Engl. J. Med. 341, 738–746 (1999).
28. Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004).
29. Everts, V., van der Zee, E., Creemers, L. & Beertsen, W. Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem. J. 28, 229–245 (1996).
30. Murphy, G. & Gavrilovic, J. Proteolysis and cell migration: creating a path? Curr. Opin. Cell Biol. 11, 614–621 (1999).
31. Wolf, K. & Friedl, P. Functional imaging of pericellular proteolysis in cancer cell invasion. Biochimie 87, 315–320 (2005).
32. Eeckhout, Y. & Vaes, G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J. 166, 21–31 (1977).
33. Guinec, N., Dalet-Fumeron, V. & Pagano, M. “In vitro” Study of Basement Membrane Degradation by the Cysteine Proteinases, Cathepsins B, B-Like and L. Digestion of Collagen IV, Laminin, Fibronectin, and Release of Gelatinase Activities front Basement Membrane Fibronectin. Biol. Chem. Hoppe. Seyler. 374, 1135–1146 (1993).
34. Yadati, T., Houben, T., Bitorina, A. & Shiri-Sverdlov, R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells 9, 1679 (2020).
35. Rünger, T. M., Quintanilla-Dieck, M. J. & Bhawan, J. Role of Cathepsin K in the Turnover of the Dermal Extracellular Matrix during Scar Formation. J. Invest. Dermatol. 127, 293–297 (2007).
36. Balce, D. R., Allan, E. R. O., McKenna, N. & Yates, R. M. γ-Interferon-inducible Lysosomal Thiol Reductase (GILT) Maintains Phagosomal Proteolysis in Alternatively Activated Macrophages. J. Biol. Chem. 289, 31891–31904 (2014).
37. Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 227, 493–507 (2012).
38. Guimarães, A. H. C. et al. TAFI and Pancreatic Carboxypeptidase B Modulate In Vitro Capillary Tube Formation by Human Microvascular Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 27, 2157–2162 (2007).
39. Simone, T. M. et al. SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-“Activated” Keratinocytes. Adv. Wound Care 3, 281–290 (2014).
40. Gordts, S., Muthuramu, I., Amin, R., Jacobs, F. & De Geest, B. The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals 7, 419–432 (2014).
41. Sengupta, M. B., Saha, S., Mohanty, P. K., Mukhopadhyay, K. K. & Mukhopadhyay, D. Increased expression of ApoA1 after neuronal injury may be beneficial for healing. Mol. Cell. Biochem. 424, 45–55 (2017).
42. Nyberg, P. et al. MMP-9 Activation by Tumor Trypsin-2 Enhances in vivo Invasion of Human Tongue Carcinoma Cells. J. Dent. Res. 81, 831–835 (2002).
43. Guo, X. & Dhodapkar, K. M. Central and overlapping role of Cathepsin B and inflammasome adaptor ASC in antigen presenting function of human dendritic cells. Hum. Immunol. 73, 871–878 (2012).
44. Taxman, D. J. et al. The NLR Adaptor ASC/PYCARD Regulates DUSP10, Mitogen-activated Protein Kinase (MAPK), and Chemokine Induction Independent of the Inflammasome. J. Biol. Chem. 286, 19605–19616 (2011).
45. Sartoretto, S. et al. Apoptosis‐associated speck‐like protein containing a caspase‐1 recruitment domain (ASC) contributes to osteoblast differentiation and osteogenesis. J. Cell. Physiol. 234, 4140–4153 (2019).
46. Hoffman, M. The multiple roles of tissue factor in wound healing. Front. Biosci. S4, 295 (2012).
47. Fuchs, Y. & Steller, H. Programmed Cell Death in Animal Development and Disease. Cell 147, 742–758 (2011).
48. Liu, X.-J. et al. Lumican Accelerates Wound Healing by Enhancing α2β1 Integrin-Mediated Fibroblast Contractility. PLoS One 8, e67124 (2013).
49. Corsuto, L. et al. Sulfation degree not origin of chondroitin sulfate derivatives modulates keratinocyte response. Carbohydr. Polym. 191, 53–64 (2018).
50. Lobello, N. et al. Ferritin heavy chain is a negative regulator of ovarian cancer stem cell expansion and epithelial to mesenchymal transition. Oncotarget 7, 62019–62033 (2016).
51. Foster, A. M. et al. IL-36 Promotes Myeloid Cell Infiltration, Activation, and Inflammatory Activity in Skin. J. Immunol. 192, 6053–6061 (2014).
52. Dietrich, D. et al. Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines. Cytokine 84, 88–98 (2016).
53. Loughner, C. L. et al. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum. Genomics 10, 10 (2016).