1 Perlman, S. & Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7, 439-450, doi:10.1038/nrmicro2147 (2009).
2 Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506, doi:10.1016/S0140-6736(20)30183-5 (2020).
3 Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953-1966, doi:10.1056/NEJMoa030781 (2003).
4 Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814-1820, doi:10.1056/NEJMoa1211721 (2012).
5 Domling, A. & Gao, L. Chemistry and Biology of SARS-CoV-2. Chem 6, 1283-1295, doi:10.1016/j.chempr.2020.04.023 (2020).
6 Tan, Y., Schneider, T., Leong, M., Aravind, L. & Zhang, D. Novel Immunoglobulin Domain Proteins Provide Insights into Evolution and Pathogenesis Mechanisms of SARS-Related Coronaviruses. bioRxiv, 2020.2003.2004.977736, doi:10.1101/2020.03.04.977736 (2020).
7 Cheng, M. P. et al. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann Intern Med 172, 726-734, doi:10.7326/M20-1301 (2020).
8 Zhao, J. et al. Development and evaluation of an enzyme-linked immunosorbent assay for detection of antibodies against the spike protein of SARS-coronavirus. J Clin Virol 33, 12-18, doi:10.1016/j.jcv.2004.09.024 (2005).
9 Zhao, J. et al. A study on antigenicity and receptor-binding ability of fragment 450-650 of the spike protein of SARS coronavirus. Virology 359, 362-370, doi:10.1016/j.virol.2006.09.022 (2007).
10 Organization, W. H. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected. Interim guidance. Pediatria i Medycyna Rodzinna 16, 9-26, doi:10.15557/PiMR.2020.0003 (2020).
11 Kowarz, E., Loscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J 10, 647-653, doi:10.1002/biot.201400821 (2015).
12 Isho, B. et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol 5, doi:10.1126/sciimmunol.abe5511 (2020).
13 Tillett, R. L. et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis, doi:10.1016/S1473-3099(20)30764-7 (2020).
14 To, K. K.-W. et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clinical Infectious Diseases, doi:10.1093/cid/ciaa1275 (2020).
15 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292 e286, doi:10.1016/j.cell.2020.02.058 (2020).
16 Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115-119, doi:10.1038/s41586-020-2380-z (2020).
17 Flower, T. G. et al. Structure of SARS-CoV-2 ORF8, a rapidly evolving coronavirus protein implicated in immune evasion. bioRxiv, doi:10.1101/2020.08.27.270637 (2020).
18 Zhang, Y. et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC-I. bioRxiv, 2020.2005.2024.111823, doi:10.1101/2020.05.24.111823 (2020).
19 Li, J. Y. et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res 286, 198074, doi:10.1016/j.virusres.2020.198074 (2020).
20 Hachim, A. et al. ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nat Immunol 21, 1293-+, doi:10.1038/s41590-020-0773-7 (2020).
21 Mueller, L. et al. Sensitivity of commercial Anti-SARS-CoV-2 serological assays in a high-prevalence setting. medRxiv, 2020.2006.2011.20128686, doi:10.1101/2020.06.11.20128686 (2020).
22 Webb, B. J. et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: a cohort study. Lancet Rheumatol, doi:10.1016/S2665-9913(20)30343-X (2020).