1 Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol11, 506-514, doi:10.1038/nrgastro.2014.66 (2014).
2 Mallon, C. A., Elsas, J. D. V. & Salles, J. F. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol23, 719-729, doi:10.1016/j.tim.2015.07.013 (2015).
3 Crook, N. et al. Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut. Cell Host Microbe25, 499-512 e498, doi:10.1016/j.chom.2019.02.005 (2019).
4 Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature492, 113-117, doi:10.1038/nature11623 (2012).
5 Leatham, M. P. et al. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect Immun77, 2876-2886, doi:10.1128/IAI.00059-09 (2009).
6 Ferreiro, A., Crook, N., Gasparrini, A. J. & Dantas, G. Multiscale Evolutionary Dynamics of Host-Associated Microbiomes. Cell172, 1216-1227, doi:10.1016/j.cell.2018.02.015 (2018).
7 Yelin, I. et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med25, 1728-1732, doi:10.1038/s41591-019-0626-9 (2019).
8 Zhao, S. et al. Adaptive Evolution within Gut Microbiomes of Healthy People. Cell Host Microbe25, 656-667 e658, doi:10.1016/j.chom.2019.03.007 (2019).
9 Walter, J., Maldonado-Gomez, M. X. & Martinez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol49, 129-139, doi:10.1016/j.copbio.2017.08.008 (2018).
10 Maldonado-Gomez, M. X. et al. Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome. Cell Host Microbe20, 515-526, doi:10.1016/j.chom.2016.09.001 (2016).
11 Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab14, 403-414, doi:10.1016/j.cmet.2011.07.012 (2011).
12 Schwarzer, M. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science351, 854-857, doi:10.1126/science.aad8588 (2016).
13 Kostic, A. D., Howitt, M. R. & Garrett, W. S. Exploring host-microbiota interactions in animal models and humans. Genes Dev27, 701-718, doi:10.1101/gad.212522.112 (2013).
14 Derrien, M. & van Hylckama Vlieg, J. E. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol23, 354-366, doi:10.1016/j.tim.2015.03.002 (2015).
15 McNulty, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med3, 106ra106, doi:10.1126/scitranslmed.3002701 (2011).
16 Suez, J. et al. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell174, 1406-1423 e1416, doi:10.1016/j.cell.2018.08.047 (2018).
17 Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol17, e3000102, doi:10.1371/journal.pbio.3000102 (2019).
18 Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our Gut Microbiome: The Evolving Inner Self. Cell171, 1481-1493, doi:10.1016/j.cell.2017.11.024 (2017).
19 Sanchez, A. & Gore, J. feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS Biol11, e1001547, doi:10.1371/journal.pbio.1001547 (2013).
20 Martino, M. E. et al. Bacterial Adaptation to the Host's Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis. Cell Host Microbe24, 109-119 e106, doi:10.1016/j.chom.2018.06.001 (2018).
21 Zhang, J. et al. Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food. Sci Rep6, 32524, doi:10.1038/srep32524 (2016).
22 Hempel, S. et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA307, 1959-1969, doi:10.1001/jama.2012.3507 (2012).
23 Shao, Y. et al. Lactobacillus plantarum HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia. Food Funct8, 4508-4516, doi:10.1039/c7fo00902j (2017).
24 Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol11, e1004226, doi:10.1371/journal.pcbi.1004226 (2015).
25 Schroder, G. & Lanka, E. TraG-like proteins of type IV secretion systems: functional dissection of the multiple activities of TraG (RP4) and TrwB (R388). J Bacteriol185, 4371-4381, doi:10.1128/jb.185.15.4371-4381.2003 (2003).
26 Gibson, G. R. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol14, 491-502, doi:10.1038/nrgastro.2017.75 (2017).
27 Succi, M. et al. Pre-cultivation with Selected Prebiotics Enhances the Survival and the Stress Response of Lactobacillus rhamnosus Strains in Simulated Gastrointestinal Transit. Front Microbiol8, 1067, doi:10.3389/fmicb.2017.01067 (2017).
28 Tillisch, K. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology144, 1394-1401, 1401 e1391-1394, doi:10.1053/j.gastro.2013.02.043 (2013).
29 Sanders, M. E. et al. Safety assessment of probiotics for human use. Gut Microbes1, 164-185, doi:10.4161/gmic.1.3.12127 (2010).
30 Kwok, L. Y. et al. The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by pyrosequencing. Benef Microbes6, 405-413, doi:10.3920/BM2014.0063 (2015).
31 Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes9, 88, doi:10.1186/s13104-016-1900-2 (2016).
32 Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience1, 18, doi:10.1186/2047-217X-1-18 (2012).
33 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods9, 357-359, doi:10.1038/nmeth.1923 (2012).
34 Yang, J., Ding, X., Sun, X., Tsang, S. Y. & Xue, H. SAMSVM: A tool for misalignment filtration of SAM-format sequences with support vector machine. J Bioinform Comput Biol13, 1550025, doi:10.1142/S0219720015500250 (2015).
35 Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res44, W242-245, doi:10.1093/nar/gkw290 (2016).
36 Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19, 455-477, doi:10.1089/cmb.2012.0021 (2012).
37 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol215, 403-410, doi:10.1016/S0022-2836(05)80360-2 (1990).
38 Kent, W. J. BLAT--the BLAST-like alignment tool. Genome Res12, 656-664, doi:10.1101/gr.229202 (2002).
39 Song, Y. et al. Genomic Variations in Probiotic Lactobacillus plantarum P-8 in the Human and Rat Gut. Front Microbiol9, 893, doi:10.3389/fmicb.2018.00893 (2018).
40 Moskalensky, A. E. et al. Method for the simulation of blood platelet shape and its evolution during activation. PLoS Comput Biol14, e1005899, doi:10.1371/journal.pcbi.1005899 (2018).
41 Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol20, 257, doi:10.1186/s13059-019-1891-0 (2019).
42 Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods15, 962-968, doi:10.1038/s41592-018-0176-y (2018).
43 Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat Commun10, 2719, doi:10.1038/s41467-019-10656-5 (2019).
44 Nayfach, S., Rodriguez-Mueller, B., Garud, N. & Pollard, K. S. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res26, 1612-1625, doi:10.1101/gr.201863.115 (2016).