[1]Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics-2014 update. Circulation, 2014; 129(3).
[2] Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature(Review)[J].International Ophthalmology.2019; 39(1):259-271.
[3] Suzumura A. Neuron-microglia interaction in neuroinflammation. Current Protein and Peptide Science, 2013; 14(1): 16-20.
[4] Umebayashi D, Natsume A, Takeuchi H, Hara M, Nishimura Y, Fukuyama R, Sumiyoshi N, Wakabayashi T. Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exitoneurotoxicity. Journal of Neurotrauma, 2014;31(24): 1967-1974.
[5]Scianni M, Antonilli L, Chece G, Cristalli G, Castro MAD, Limatola C, Maggi L. Fractalkine (CX3CL1) enhances hippocampal N-methyl-D-aspartate receptor (NMDAR) function via D-serine and adenosine receptor type A2 (A2AR) activity. Journal of Neuroinflammation, 2013; 10(108): 1742-20.
[6]Wei SG, Yu Y, Felder R. N-Methyl-D-Aspartate (NMDA) Receptors Contribute to the Excitatory Sympathetic and Hemodynamic Responses to Blood-borne Pro-inflammatory Cytokines in Rat. Faseb Journal, 2015; 29, 987.3.
[7]Yenari MA, Kauppinen TM, Swanson RA. Microglial activation in stroke: therapeutic targets. Neurotherapeutics, 2010; 7(4): 378-391.
[8] Cox FF, Carney D, Miller AM, Lynch MA. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain, Behavior and Immunity, 2012, 26(5): 789-796.
[9] Nathalie K,Swaab DF,Hoek RM,Inge H. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. Journal of Neuropathology & Experimental Neurology, 2009; 68(2): 159-167.
[10] Lamy L, Foussat A, Brown EJ, Bornstein P, Ticchioni M, Bernard A. Interactions between CD47 and thrombospondin reduce inflammation. The Journal of Immunology, 2007; 178(9): 5930-5939.
[11] Mott RT, Ait-Ghezala G, Town T, Mori T, Vendrame M, Zeng J, Ehrhart J, Mullan M, Tan J. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia, 2004; 46(4): 369-379.
[12]Cho KO, Hunt CA, Kennedy MB. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron, 1992; 9(5): 929-942.
[13] Kim E, Sheng M. PDZ domain proteins of synapses. Nat. Rev. Neurosci, 2004; 5(10): 771–781.
[14] Coley AA, Gao WJ. PSD95: a synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry, 2018; 82: 187-194.
[15]Zhang Q, Cheng H, Rong R, et al. The effect of PSD-93 deficiency on the expression of early inflammatory cytokines induced by ischemic brain injury. Cell Biochem Biophys, 2015; 73(3): 695-700.
[16] Kawabori M, Yenari MA. Inflammatory responses in Brain Ischemia. Curr Med Chem, 2015; 22(10): 1258-1277.
[17] Quillinan N, Grewal H, Deng G, et al. Region-specific role for GluN2B-containing NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia. Neuroscience, 2015; 284: 555-565.
[18] Harrison JK, Jiang Y, Chen S, et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A, 1998; 95(18): 10896-10901.
[19] Ahn JH, Kim DW, Park JH, Lee TK, Lee HA, Won MH, Lee CH. Expression changes of CX3CL1 and CX3CR1 proteins in the hippocampal CA1 field of the gerbil following transient global cerebral ischemia [J].International Journal of Molecular Medicine.2019; 44(3):939-948.
[20] Zeng ML, Ye F, Xu J, Zhang MJ. PDZ Ligand Binding-Induced Conformational Coupling of the PDZ-SH3-GK Tandems in PSD-95 Family MAGUKs [J]. J Mol Biol, 2018; 430, 69–86.
[21] Won S, Levy JM, Roche KW. MAGUKs: Multifaceted synaptic organizers [J]. Curr Opin Neurobiol, 2017; 94-101.
[22] Christopherson KS, Hillier BJ, Lim WA, Bredt DS. PSD-95 Assembles a Ternary Complex with the N-Methyl-D-aspartic Acid Receptor and a Bivalent Neuronal NO Synthase PDZ Domain. J Biol Chem. 1999; 274(39): 27467-27473.
[23] Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, Lu W, Ji X, Zhou QG, Zhu DY. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95[J]. Nature Medicine.2010; 16(12): 1439-1444.
[24] Lin YH, Liang HY, Xu K, Ni HY, Dong J, Xiao H, et.al. Dissociation of nNOS from PSD‐95 promotes functional recovery after cerebral ischaemia in mice through reducing excessive tonic GABA release from reactive astrocytes. Journal of pathol.2018; 244(2):176-188.
[25] Luo CX, Lin YH, Qian XD, Tang Y, Zhou HH, Jin X, et.al. Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke. J Neurosci. 2014; 34(40):13535-13548.
[26] Zhang MJ, Li QJ, Chen L, Li J, Zhang X, Chen X, Zhang QX, Shao Y, Xu Y. PSD-93 deletion inhibits Fyn-mediated phosphorylation of NR2B and protects against focal cerebral ischemia. Neurobiology of Disease, 2014; 68:104-111.
[27] Kawabori M, Yenari MA. Inflammatory responses in Brain Ischemia. Current Medicinal Chemistry, 2015; 22(10): 1258-1277.
[28] Quillinan N, Grewal H, Deng G, Shimizu K, Yonchek JC, Strnad F, Traystman RJ, Herson PS. Region-specific role for GluN2B-containing NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia. Neuroscience; 2015, 284:555-565.
[29] Mattison HA, Nie H, Gao H, Zhou H, Hong JS, Zhang J. Suppressed pro-inflammatory response of microglia in CX3CR1 knockout mice. Journal of Neuroimmunology, 2013, 257(1): 110-115.
[30]Aoyama T, Inokuchi S, Brenner DA, Seki E. CX3CL1‐CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology, 2010, 52(4): 1390-1400.
[31] Combadière C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation. 2003; 107(7):1009-1016.
[32]Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007; 117(1): 185-194.
[33] Limatola C, Ransohoff RM. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci. 2014; 8: 229.
[34] Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, et al. Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem. 2001; 276(41): 37993-38001.
[35]Cotter R, Williams C, Ryan L, Erichsen D, Lopez A, Peng H, et al. Fractalkine (CX3CL1) and brain inflammation: Implications for HIV-1-associated dementia. J Neurovirol. 2002; 8(6):585-598.
[36]Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood, 2003; 102(4): 1186-1195.
[37]Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci, 2007;104(25):10655-10660.
[38]Chapman GA, Moores K, Harrison D, Campbell CA, Stewart BR, Strijbos PJ. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci. 2000; 20(15):RC87.
[39]Imai T, Hieshima K, Haskell C, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997, 91(4):521–530.
[40]Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med. 1998; 188(8):1413–1419.
[41]Tarozzo G, Campanella M, Ghiani M, Bulfone A, Beltramo M. Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia-reperfusion brain injury in the rat. Eur J Neurosci. 2002; 15(10): 1663-1668.