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Abstract
Propose: The proposed deep learning model with a mask region–based convolutional neural network
(Mask R-CNN) can predict choroidal thickness automatically. Changes in choroidal thickness with age
can be detected with manual measurements. In this study, we aimed to investigate choroidal thickness in
healthy eyes by utilizing the Mask R-CNN model.

Methods: A total of 68 eyes from 57 participants without signi�cant ocular disease were recruited. The
participants were allocated to one of three groups according to their age and underwent spectral domain
optical coherence tomography (SD-OCT) centered on the fovea. Physicians labelled the choroidal
contours in all the OCT sequences. We applied the Mask R-CNN model for automatic segmentation.
Comparisons of choroidal thicknesses were conducted according to age and prediction accuracy.

Results: Older age groups had thinner choroids, according to the automatic segmentation results; the
mean choroidal thickness was 253.7 ± 41.9 μm in the youngest group, 206.8 ± 35.4 μm in the middle-
aged group, and 152.5 ± 45.7 μm in the oldest group (p < 0.01). Measurements obtained using physician
sketches demonstrated similar trends. We observed a signi�cant negative correlation between choroidal
thickness and age (p < 0.01). The prediction error was lower and less variable in choroids that were
thinner than the cutoff point of 280 μm.

Conclusion: The mean choroidal thickness decreased with age in healthy subjects. The Mask R-CNN
model can accurately predict choroidal thickness, especially choroids thinner than 280 μm. This model
can enable exploring larger and more varied choroid datasets comprehensively, automatically, and
conveniently. 

1. Introduction
The choroid, located underneath the retina and above the sclera, is the posterior portion of the uveal tract.
It comprises numerous blood vessels and pigmented stroma. The choroid is vital for visual physiology.
For example, it supplies nutrients and oxygen to the outer retina, including the retinal pigment epithelium
(RPE) and photoreceptors; moreover, choroidal melanocytes absorb excess light [1, 2].

Pathological changes in the choroid are related to many vision-threatening diseases, such as age-related
macular degeneration (AMD), polypoidal choroidal vasculopathy (PCV), central serous chorioretinopathy
(CSCR), pathologic myopia, and autoimmune disease; choroidal thickness is also associated with these
diseases [3–6]. Detecting the choroid and estimating its thickness can facilitate clinical diagnosis and
disease progression monitoring tasks [7]. Previous studies have reported that choroidal thickness is
negatively correlated with age in healthy eyes, not only in terms of the subfoveal choroidal thickness
(SFCT), but also in relation to the thickness over the nasal site and temporal site [8–10].

Optical coherence tomography (OCT) is a convenient approach to identifying and measuring the structure
of the posterior visual segment, which can provide details of the retinal and choroidal layers. Owing to
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technological advancements and population aging, OCT is becoming increasingly essential for
diagnosing many ocular diseases. Accordingly, an appropriate model for automatic recognition of
features in medical images is crucial. For instance, a choroid segmentation model can aid
ophthalmologists in accurate clinical diagnoses and effective management as well as in the
development of a database or comparison site for different groups. In addition, manually outlining the
boundary of the choroid is a time-consuming task, and it can be challenging when the borders are
ambiguous. Therefore, developing an automatic OCT image analysis and segmentation model is crucial.

Depicting the choroid border is complex, especially at the choroidal–scleral interface (CSI), because of
the inconsistent and inhomogeneous tissue texture. In the past decade, scholars have proposed several
automatic models for segmenting the choroid from OCT images. For example, Tian et al. presented a
mathematical algorithm for detecting Bruch’s membrane by searching for the pixel with the largest
gradient value near the RPE and delineating the CSI using the Dijkstra algorithm [11]. This algorithm is
implemented semiautomatically, requiring time-consuming manual sketching tasks. Deep learning
models are gradually being utilized in automatic feature recognition in choroidal images. Masood et al.
and He et al. have proposed approaches based on a combination of morphological and deep learning
methodologies involving convolutional neural network (CNN) [12, 13]. They developed CNN classi�ers
and a l2-lq (0 < q < 1) �tter model based on the LeNet-5 framework; their classi�ers can delineate the outer
boundary of the choroid, but the convolutional layers can extract only shallow features. Mask region–
based CNN (Mask R-CNN), a classic neural network algorithm for instance segmentation, constitutes a
powerful model that can complete object detection, classi�cation, and instance segmentation
simultaneously [14]. Hsia et al. proposed a Mask R-CNN model for the automatic segmentation of the
choroid. They observed that their model could preserve crucial information on location, including shallow
and deep layer features, and that it could achieve an accurate prediction rate and faster choroidal
boundary segmentation [15]. Overall, Mask R-CNN models are accurate and effective in the automatic
segmentation of choroid images.

Previous studies evaluating choroidal thickness in different age groups have mainly relied on
discontinuous measurements at different sites of the choroid [9, 10, 16, 17]. An automatic segmentation
model might provide continuous measurements and more comprehensive quanti�cations of choroidal
thickness.

Accordingly, we investigated the choroidal thickness in healthy subjects from different age groups in
Taiwan by using the deep learning method with the Mask R-CNN model.

2. Materials And Methods

2.1. Participants and clinical evaluation
We recruited participants of different ages from Taichung Veterans General Hospital, Taiwan. The
inclusion criterion was having a refractive error, measured as the spherical equivalent (SE), of between
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−6.0 and +6.0 D; we used this criterion to reduce the possible in�uence of high myopia, high hyperopia,
and axial length. We excluded individuals with ocular diseases that would potentially in�uence the
appearance and shape of the retina and choroid, such as ocular tumors, autoimmune diseases, uveitis,
subretinal �uid, or large drusens. We also excluded individuals who had previously received intraocular
interventions, such as vitrectomy or intravitreal injection. Accordingly, this study included 57 healthy
subjects aged from 21 to 79 years (total eyes: 68).

2.2. Data compilation
We applied an OCT image dataset composed of 68 eyes from 57 participants. All the participants
underwent a spectral domain OCT (SD-OCT) scan (Heidelberg Engineering, Heidelberg, Germany). The
quality and depth of these images were con�rmed by physicians and were considered adequate for the
visualization and analysis of the choroid. Each OCT scan sequence comprised 25 two-dimensional slices
covering a 6 × 6 mm area surrounding the center of the fovea. The interval between consecutive slices
was 24 µm. The spatial resolution of each image was 1,008 × 596 pixels, with 1 pixel corresponding to 4
µm. Each OCT image was monochrome with 256 gray levels. In addition, we removed any dispensable
parts of the image by clipping every slice into a 480 × 480 pixel format. Physicians outlined the contours
of the choroids in all OCT scan sequences by using LabelMe [18]. We judged the CSI to be the outer
border of the choroid, and we considered Bruch’s membrane to represent the inner border.

2.3. Segmentation using Mask R-CNN model
We used Mask R-CNN model for choroid detection. The model involves a two-stage framework. In the �rst
stage, an image is convolved to generate distinguishable feature maps and recommendations through a
regional proposal network (RPN). In the second stage, the proposals are classi�ed and bounding boxes
and masks are generated. The proposed model is based on a deep residual network (ResNet) and a
feature pyramid network (FPN). The Mask R-CNN model has standard convolutional and fully connected
layers, which are used for mask generation and object detection.

The proposed model receives an OCT image and outputs a mask of the choroid. The Mask R-CNN model
involves three steps. First, a 480 × 480 pixel region-of-interest image is extracted and then used in the
training network to extract features and generate a feature map. Second, the generated feature map is
sent to the RPN to locate proposals related to the choroid. Third, the proposals are subjected to
classi�cation and regression processes, after which the fully connected network (FCN) is implemented to
generate a mask for the choroid. Figure 1 illustrates the framework of the proposed Mask R-CNN model.

2.4. Statistical analysis
We used SPSS (version 20) for our statistical analyses. We applied an analysis of variance (ANOVA) to
compare variables between the different age groups. Spearman’s correlation and linear regression were
applied to examine the relationship between age, SE, and choroidal thickness. Data are presented as
mean ± standard deviation. Statistical signi�cance was de�ned as a two-tailed p value of less than 0.05
for all statistical analyses.
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3. Results
We included a total of 68 eyes from 28 men and 29 women in this study. We divided the participants into
20–39-, 40–59-, and 60–79-year age groups, comprising 19, 22, and 27 eyes, respectively. Table 1a
presents the demographic and clinical characteristics of the different age groups.

Table 1
a. Demographic and clinical characteristics of participants

Age group
(years)

Mean age
(years)

Mean SE

(diopters)

Number of eyes
(subjects)

number of
OD/OS

20-39 29.7 ± 5.9 -1.2 ± 0.7 19 (16) 9/ 10

40-59 52.0 ± 4.3 -1.9 ± 2.1 22 (20) 9/ 13

60-79 65.8 ± 4.7 -0.8 ± 2.4 27 (21) 11/ 16

Note: SE: spherical equivalents; OD: oculus dexter; OS: oculus sinister

Table 1
b. Choroidal thicknesses in different age groups predicted by proposed deep learning model

Age group (years) Mean choroidal thickness (µm) 95% CI (µm) p value

Lower bound Upper bound

20-39 (n=19) 253.7 ± 41.9 233.4 273.9 < 0.01

20-59 (n=22) 206.8 ± 35.4 191.0 222.5

60-79 (n=27) 152.5 ± 45.7 134.5 170.6

 
Table 1

c. Choroidal thickness in different age groups calculated using physician sketches
Age group (years) Mean choroidal thickness (μm) 95% CI (μm) p value

Lower bound Upper bound

20-39 (n=19) 312.4 ± 49.4 288.6 336.2 < 0.01

20-59 (n=22) 219.6 ± 35.7 203.8 235.5

60-79 (n=27) 179.2 ± 48.8 159.8 198.5

Note: μm: micrometer; CI: con�dence interval

 Table 1b lists the mean choroidal thicknesses predicted by our Mask R-CNN model. The 20–39-year
group had the largest predicted mean choroidal thickness (253.7 ± 41.9 µm), followed by the 40–59-year
group (206.8 ± 35.4 µm). The 60–79-year group had the lowest choroidal thickness (152.5 ± 45.7 µm). In
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each age group, normal distribution was identi�ed by the Shapiro–Wilk test (p = 0.14, 0.73, and 0.80, in
the 20–39-, 40–59-, and 60–79-year groups, respectively). Our ANOVA results revealed signi�cant
differences in mean choroidal thickness between the three groups (p < 0.01). Furthermore, a post hoc
analysis revealed a statistical difference in choroidal thickness between any two groups (all p < 0.01).
Table 1c lists the mean choroidal thicknesses measured on the basis of physician sketches. The mean
choroidal thicknesses were 312.4 ± 49.4, 219.6 ± 35.7, and 179.2 ± 48.8 µm in the 20–39-, 40–59-, and
60–79-year groups, respectively, indicating statistically signi�cant differences. Compared with the
manually sketched contours, the average error obtained for the automatic predictions by our proposed
Mask R-CNN model was 8.56 pixels.

The linear regression revealed a signi�cant negative correlation between age and the automatically
predicted mean choroidal thickness (R2 = 0.53, p < 0.01). Figure 2 presents a scatterplot of the mean
choroidal thickness by age, which shows that choroidal thickness decreases as age increases. The
regression formula is expressed as follows: mean choroidal thickness (µm) = 337.7 − 2.7 ×  age. In
addition, we observed similar trends for the choroidal thickness measured on the basis of the manual
sketches; that is, the mean choroidal thickness increased in the older age group (p < 0.01), and a negative
linear correlation was revealed between age and the derived mean choroidal thickness (R2 = 0.59, p <
0.01).

We performed further analysis to establish the relationship between choroidal thickness and model
prediction accuracy. Figure 3 presents a scatterplot and box plot of prediction error versus choroidal
thickness, with the cutoff point being set at 280 µm based on the dataset labelled by physicians. The
average prediction error was 6.49 ± 3.57 pixels in subjects with choroidal thicknesses of less than 280
µm (n = 49) and 13.90 ± 7.94 pixels in those with choroidal thicknesses of greater than 280 µm (n = 19, p
< 0.01). As indicated by the box plot in Figure 3a, the proposed model achieved lower and less variable
prediction errors in subjects with thinner choroids. Moreover, we observed a positive linear correlation
between prediction error and choroidal thicknesses of greater than 280 µm (R2 = 0.21, p = 0.048; Figure
3b). No signi�cant relationship was observed between prediction error and choroidal thicknesses of less
than 280 µm and (R2 = 0.01, p = 0.54). Figure 4 demonstrates the choroidal contours delineated manually
by physicians and those predicted by our model for two participants. One of the two participants had a
thinner choroid, and the prediction error was 4.88 pixels; the other participant had a thicker choroid, and
the prediction error was higher.

In our study, only subjects without high myopia or hyperopia were included. In the situation of SE
refraction error between −6.0 and +6.0 D, no signi�cant correlation was identi�ed between choroidal
thickness and SE (R2 = 0.04, p = 0.11).

4. Discussion
The major �ndings of this study are outlined as follows: (1) The mean choroidal thickness reduced
signi�cantly for every 20-year increase in age. (2) A negative correlation was demonstrated between age
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and choroidal thickness. (3) Mask R-CNN model achieved satisfactory prediction accuracy in subjects
with choroidal thicknesses of less than 280 µm.

We established that choroidal thickness decreased as age increased in subjects without signi�cant ocular
diseases or a history of intraocular operation. This �nding is consistent with those of previous studies
including Japanese, Korean, Chinese, and Iranian populations [8–10, 16, 17]. As to other factors,
refractive error is considered to be negatively correlated with choroidal thickness. However, our study
revealed no signi�cant correlation between refractive error and choroidal thickness in our participants, for
whom the refractive error was between −6 and +6 D. This �nding is in line with the results of Fujiwara et
al. (p = 0.10, R2 = 0.1) [19]. Furthermore, on the basis of a multiple regression analysis, Ikuno et al.
reported that axial length was not signi�cantly associated with choroidal thickness (p = 0.22) [16].

For our Mask R-CNN model predictions, the mean choroidal thickness was 198.3 ± 58.4 µm, which was
lower than that obtained using physician sketches (229.5 ± 70.6 µm). The error observed for our model
(8.56 pixels) is slightly higher than the average error (4.56 pixels) observed for a previously proposed
model [15]. We noticed found that the prediction error was higher in the 20–39-year group, with thicker
choroids, than in the other two groups. Figure 4 also depicts the di�culty in accurately delineating the
choroidal outer boundary around the CSI when a thicker choroid is presented. We speculate that
prediction accuracy could be affected in cases with thicker choroids. Possible reasons are that the quality
and visibility of the CSI could be poorer in images of thicker choroids. In addition, the training and testing
datasets comprised images of subjects aged from 21 to 79 years, for whom the choroidal thickness and
morphology varied; such variations might engender challenges in accurately predicting the choroidal
thickness. Further analysis demonstrated that the average prediction error observed for subjects with
choroidal thicknesses of more than 280 µm was signi�cantly higher and more variable than that
observed for those with choroidal thicknesses of less than 280 µm. Speci�cally, the prediction error was
6.49 pixels in subjects with choroidal thicknesses of less than 280 µm, and this value was not related to
the change in choroidal thickness. This �nding indicates that the proposed deep learning model is reliable
and applicable under this condition. However, in subjects with choroidal thicknesses of greater than 280
µm, the prediction error varied, and prediction error was positively correlated with choroidal thickness.
This demonstrates that the proposed model is more suitable for images from subjects with choroidal
thicknesses that do not exceed 280 µm. Previous studies have demonstrated that the successful
measurement rate decreased as SFCT increased. A previous study reported that enhanced depth imaging
(EDI)-OCT [20] appeared to improve the successful measurement rate, but obvious differences existed
between thinner and thicker choroids [21]. Therefore, for subjects with extremely thick choroids and
pachychoroid diseases, such as PCV or CSCR, their �ndings and data should be interpreted cautiously.

The choroid is strati�ed into three layers: the choriocapillaris with small vessels in the super�cial layer;
Sattler’s layer with medium-sized vessels in the middle; and Haller’s layer, the outer layer with large
vessels. Choroidal morphology and thickness are in�uenced by not only physiological changes but also
pathological factors [22]. Tissue water content and vascular endothelial growth factor (VEGF) are
possible factors contributing to reduced choroidal thickness in healthy elderly people. A previous study
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that applied a water-drinking test revealed that choroidal thickness expanded when the amount of water
in the body increased [23]. Considering that the amount and proportion of water in the body gradually
decrease with age, this may explain the �ndings in our study. In addition, The RPE secretes VEGF toward
the basal side of the choroid, and it plays an essential role in choroidal development [24]. The VEGF
receptors are located in the choriocapillaris. Previous studies have reported that as age increases, the
diameter of the choriocapillaris and thickness of the choroid shrink while the thickness of Burch’s
membrane increases [25, 26]. The accumulation of lipid content with age is considered to cause the
thickening of Bruch’s membrane, which possibly occludes the movement of water-soluble agents between
the RPE and the choroid. Reduced VEGF secretion into the choriocapillaris may lead to the shrinking of
the choroid. In addition to normal aging physiology, the alternation of the choroid has been reported in
chorioretinal disease; for example, Haller’s layer, Sattler’s layer, and choroidal volume or thickness have
been reported to be signi�cantly decreased in certain patients with diabetes mellitus or AMD [27, 28].
Reduced choroidal thickness was also noted in retinitis pigmentosa [29].

Previous studies have reported several approaches to evaluating choroidal thickness in different age
groups. Such approaches mainly involve manual measurements of choroidal thickness, including SFCT,
at a single site or at sites located at different distances (e.g., 1 or 3 mm) from the fovea superiorly,
inferiorly, temporally, and nasally. SFCT is generally the highest among the measured sites [9, 10, 16, 17].
However, the mentioned approaches have several potential limitations; for example, they cannot be used
to fully evaluate the appearance and shape of the choroid, and the overall thickness might be
miscalculated in a discontinuous or unsmooth choroidal contour. To conduct a thorough examination of
choroidal topographic features, Ouyang et al. proposed choroidal thickness mapping under the concept
of spatial distribution using SD-OCT [30]. Hirata et al. introduced a swept-source OCT (SS-OCT) approach
for choroidal volume mapping [31]. Furthermore, Chhablani et al. reported that EDI-OCT exhibited high
repeatability and reproducibility in manual choroidal volume measurements [32]. Choroidal spatial
distribution indices (CSDIs), derived from choroidal volume, were proposed for quantifying the choroidal
topographic distribution [33].

Some of the aforementioned methods measure only speci�c sites of the choroid rather than the entire
layer, and others require manual choroidal segmentation. This might be a time-consuming and operator-
dependent process, making it di�cult to build a relatively large population database. Our proposed Mask
R-CNN model is advantageous because it is based on deep learning. Our model estimates choroidal
thickness by measuring numerous continuous points through automatic segmentation, thus providing an
extensive and intact viewpoint for evaluation, in contrast to previously reported approaches. In addition,
automatic segmentation and measurement with high accuracy can facilitate the establishment of larger
and more extensive databases more rapidly and consistently.

The present study has certain limitations. First, the number of subjects in each group was not high.
Further research with a larger sample size might provide more comprehensive analyses, such as analyses
strati�ed by each decade of age. Second, especially in for thicker choroids, precisely delineating the
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choroidal boundary was challenging. Lower predictive accuracy in thicker choroids has been reported.
EDI-OCT and SS-OCT may address this problem [34–36].

The application of the Mask R-CNN model revealed the relationship between choroidal thickness and age
in this study. Through this model, future studies can compare choroidal morphologies in different axial
length or in various ocular diseases, such as AMD, PCV, and CSCR. In combination with the deep learning
model, further evaluation might be examined automatically, such as choroidal volume mapping, CSDI, or
choroidal vascularity index assessment [37, 38]. In this way, the choroid can be evaluated using detailed
and robust information rapidly and reliably.

Overall, by utilizing the Mask R-CNN model for choroidal boundary depiction, our study revealed that the
mean choroidal thickness decreased with age, indicating a negative correlation with age. The model
achieved acceptable predictive accuracy, especially in thinner choroids. We anticipate applying this
e�cient model in further research with a larger sample size and more heterogeneous population.
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Figure 1

Framework of the proposed Mask R-CNN model. The OCT image is input into the backbone ResNet and
FPN to generate feature maps. The RPN module is used to map the ROI onto the feature maps. A mask of
the choroid is generated by the FCN. Note: ResNet: residual network; RPN: regional proposal network; ROI:
region of interest; FCN: fully connected network; Mask R-CNN: mask region–based convolutional neural
network.
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Figure 2

Correlations between age and mean choroidal thickness predicted by the proposed deep learning model
(p < 0.01, mean choroidal thickness (μm) = −2.7 × age + 337.7, R2 = 0.526).
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Figure 3

Relationship between prediction error and choroidal thickness for sketches manually labeled by a
physician. The cutoff point for choroidal thickness was 280 μm. (a) Scatterplot of correlations between
prediction error (pixels) and choroidal thickness (R2 = 0.01, p = 0.54 below the cutoff point; R2 = 0.21, p =
0.048 above the cutoff point). (b) Box plot of the prediction error (pixels); the left side depicts the
prediction error (pixels) of choroidal thickness below the cutoff point (280 μm; Q1 = 3.79, Q2 = 5.79, Q3 =
7.33, n = 49); the right side depicts choroidal thickness above the cutoff point (Q1 = 8.78, Q2 = 11.16, Q3
= 17.23, n = 19).
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Figure 4

Delineation of the choroidal contour in two cases. Case 1: 61-year-old participant (error: 4.9 pixels). Case
2: 38-year-old participant (error: 17.2 pixels). (a) Green outline indicates the contour from physician
sketch for case 1, with a mean choroidal thickness of 150.7 μm; (b) red outline represents the deep
learning model prediction of case 1, with a mean choroidal thickness of 136.8 μm; (c) green outline
indicates the contour from the physician’s sketch of case 2, with a choroidal thickness of 298.7 μm; and
(d) red outline represents the deep learning model prediction of case 2, with a choroidal thickness of
221.3 μm. The relatively imprecise contour of the choroidal outer boundary is noted.


