[1]Ye C, Li C, Deng T. (2015). Structures and ecological functions of lake littoral zones. Research of Environmental Sciences 28:171-181. https://doi.org/10.13198/j.issn.1001-6929.2015.02.02
[2]Ye C, Li C, Chen X, Jiao X, Lu S. (2012). Classification and ecological restoration modes for the littoral zone of Lake Taihu. Journal of Lake Sciences 24:822-828. https://doi.org/10.18307/2012.0603
[3]Makarewicz JC, Lewis TW, Pennuto CM, Atkinson JF, Edwards WJ, Boyer GL, Howell ET, Thomas G. (2012). Physical and chemical characteristics of the nearshore zone of Lake Ontario. Journal of Great Lakes Research 38:21-31. https://doi.org/10.1016/j.jglr.2011.11.013
[4]Bettez ND,Groffman PM. (2012). Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape. Environmental science & technology 46:10909-10917.
https://doi.org/10.1021/es301409z
[5]Nishihiro J, Washitani I. (2007). Restoration of lakeshore vegetation using sediment seed banks; studies and practices in Lake Kasumigaura, Japan. Global Environmental Research 11:171-177.
[6]Chen J, Kong D, Fan Y, Zhao L, Li J, Yang F. (2012). Restoration project of embankment and substrata in Dianchi's lakeshore. Environmental Science & Technology (China) 35:157-179. https://doi.org/10.3969/j.issn.1003-6504.2012.06.034
[7]Wang H, Song C , Liu X, Li K. (2012). Lakeshore overview of lake chaohu and ecological rehabilitation schemes for shoreline and littoral zones. Resources and Environment in the Yangtze Basin 21:63-64.
[8]Chen F, Lu S, Hu X, He Q, Feng C, Xu Q, Chen N, Ngo H, Guo H. (2019). Multi-dimensional habitat vegetation restoration mode for lake riparian zone, Taihu, China. Ecological Engineering 134:56-64. https://doi.org/10.1016/j.ecoleng.2019.05.002
[9]Yuan X, Zhang Y, Liu H, Xiong S, Li B, Deng W. (2013). The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities. Environmental Science and Pollution Research 20:7092-7102. https://doi.org/10.1007/s11356-012-1404-0
[10]Tao Y, Wu G, Zhang Y. (2017). Dune-scale distribution pattern of herbaceous plants and their relationship with environmental factors in a saline–alkali desert in Central Asia. Science of the Total Environment 576:473-480. https://doi.org/10.1016/j.scitotenv.2016.10.102
[11]Liu Y, Ren W, Shu T, Xie C, Jiang J, Yang S. (2015). Current status and the long-term change of riparian vegetation in last fifty years of Lake Honghu. Resources and Environment in the Yangtze Basin 24:38-45.
[12]Tölgyesi C, Körmöczi L. (2012). Structural changes of a Pannonian grassland plant community in relation to the decrease of water availability. Acta Botanica Hungarica 54:413-431. https://doi.org/10.1556/ABot.54.2012.3-4.17
[13]Sun R, Chen W,Song X. Luo Y, Liu L. (2019). Distribution characteristics and edge effect of soil water and salt in silvopastoral system of the Yellow River Delta, China. Chinese Journal of Applied Ecology 30:2549-2557. https://doi.org/10.13287/j.1001-9332.201908.003
[14]Hufkens K, Scheunders P, Ceulemans R. (2009). Ecotones in vegetation ecology: methodologies and definitions revisited. Ecological Research 24:977-986. https://doi.org/10.1007/s11284-009-0584-7
[15]Körmöczi L, Bátori Z, Erdős L, Tölgyesi C, Zalatnai M, Varró C. (2016). The role of randomization tests in vegetation boundary detection with moving split‐window analysis. Journal of Vegetation Science 27:1288-1296. https://doi.org/10.1111/jvs.12439
[16]Ou X, Liu X, Zhang Z, Wang W, Shi W, Fang X. (2011). Advances in ecotone width determination and its impact factors. Ecological Science 30:88-96. https://doi.org/10.3969/j.issn.1008-8873.2011.01.016
[17]Wang T, Ou X, Zhang Z, Liu X, Wang L, Sun Z., He B, Li F. (2012). Measurement of ecotone width between agro-ecosystem and forest ecosystems after grain for green program. Journal of Yunnan University-Natural Sciences Edition 34:604-612.
[18]Xiong D, Ou X, Huang W, Yang J, Wang T, Guo J, Zhang Z, (2014). Measurement of eco-tone width between agro-forest ecosystems based on soil nutrients. Ecological Science 33:594-602. https://doi.org/10.3969/j.issn. 1008-8873.2014.03.030
[19]Su X, Wang Z.(2017). Research on boundary definition and plant community diversity of wetland-grassland ecotone:a case study:Siertan Wetland in Ningxia. Forest Resources Management, 1:63-69. https://doi.org/10.13466/j.cnki.lyzygl.2017.01.012
[20]Li H, Liu X ,Zhang K, Miao J, Siraj·M.(2016). Definition of wetland-dry grassland ecotone and vegetation stability in the Nanhaizi wetland in Yanchi, Ningxia. Pratacultural Science 33:170-176. https://doi.org/10.11829/j.issn.1001-0629.2016.0462
[21]Li W, Xu Q, Li J, Li SL, Yu Q, Zhang Z.(2017). Quantification of ecotone width of returned forest land from farmland based on specific leaf area. Journal of West China Forestry Science 46:117-121. https://doi.org/10.16473/j.cnki.xblykx1972.2017.01.022
[22]Humphries NE, Queiroz N, Dyer JR, Pade NG, Musyl MK, Schaefer KM, Fuller DW, Brunnschweiler JM, Doyle TK, Houghton JD, Hays GC. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465:1066-1069. https://doi.org/10.1038/nature09116
[23]Pärn J, Remm K, Mander Ü. (2010). Correspondence of vegetation boundaries to redox barriers in a Northern European moraine plain. Basic and Applied Ecology 11:54-64. https://doi.org/10.1016/j.baae.2009.08.001
[24]Pandita S, Dutt HC. (2020). Land use induced blurring of forest-grassland transition in north-west Himalaya—A case study using Moving Split Window boundary detection technique. Journal of Mountain Science 17:3085-3096.
https://doi.org/10.1007/S11629-019-5513-9
[25]Xie Y, Qiu K, Xu D, Shi X, Qi T, Pott R. (2015). Spatial heterogeneity of soil and vegetation characteristics and soil-vegetation relationships along an ecotone in Southern Mu Us Sandy Land, China. Journal of Soils and Sediments 15:1584-1601. https://doi.org/10.1007/s11368-015-1114-6
[26]Figueiredo FO, Zuquim G, Tuomisto H, Moulatlet GM, Balslev H, Costa FR. (2018). Beyond climate control on species range: the importance of soil data to predict distribution of Amazonian plant species. Journal of Biogeography 45:190-200. https://doi.org/10.1111/jbi.13104
[27]Gong X, Brueck H, Giese KM, Zhang L, Sattelmacher B, Lin S. (2008). Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. Journal of arid environments 72:483-493. https://doi.org/10.1016/j.jaridenv.2007.07.001
[28]Torma A, Császár P. (2013). Species richness and composition patterns across trophic levels of true bugs (Heteroptera) in the agricultural landscape of the lower reach of the Tisza River Basin. Journal of Insect Conservation 17:35-51. https://doi.org/10.1007/s10841-012-9484-1
[29]Calhoun AJ, Mushet DM, Bell KP, Boix D, Fitzsimons JA, Isselin-Nondedeu F. (2017). Temporary wetla;nds: challenges and solutions to conserving a ‘disappearing’ecosystem. Biological conservation 211: pp.3-11. https://doi.org/10.1016/j.biocon.2016.11.024
[30]Petersen JE, Brandt EC, Grossman JJ, Allen GA, Benzing DH. (2015). A controlled experiment to assess relationships between plant diversity, ecosystem function and planting treatment over a nine year period in constructed freshwater wetlands. Ecological Engineering 82:531-541. https://doi.org/10.1016/j.ecoleng.2015.05.002
[31]Wang S, Dou H, editor.(1998). Records of China Lake.Beijing: Science Press Beijing.
[32]Lin Q, Xu L, Hou J, Liu Z, Jeppesen E, Han B. (2017). Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming. Water research 124:618-629. https://doi.org/10.1016/j.watres.2017.07.078
[33]Zhao W, Xiong D, Wen F, Wang X. (2020). Lake area monitoring based on land surface temperature in the Tibetan Plateau from 2000 to 2018. Environmental Research Letters 15:084033. https://doi.org/10.1088/1748-9326/ab9b41
[34]Huang X, Sillanpää M, Gjessing ET, Peräniemi S, Vogt RD. 2010. Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Science of the total environment 408:4177-4184.
[35]Wang X. (2014). Sustainable development in tibet requires control of agricultural nonpoint pollution. Environmental Science & Technology 48: 8944-8945. https://doi.org/10.1016/j.scitotenv.2010.05.015
[36]Zhang H, Wang Z, Zhang Y, Hu Z. (2012). The effects of the Qinghai–Tibet railway on heavy metals enrichment in soils. Science of the Total Environment 439:240-248. https://doi.org/10.1016/j.scitotenv.2012.09.027
[37]Tong K, Su F, Li C. (2020). Modeling of Water Fluxes and Budget in Nam Co Basin during 1979–2013. Journal of Hydrometeorology 21:829-844. https://doi.org/10.1175/JHM-D-19-0135.1
[38]Li D, Li Y, Ma B, Dong G, Wang L, Zhao J. (2009). Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges. Environmental Research Letters 4:045204. https://doi.org/10.1088/1748-9326/4/4/045204
[39]Jia X, Wang D, Liu F, Dai Q. (2020). Evaluation of highway construction impact on ecological environment of Qinghai-Tibet Plateau. Environmental Engineering & Management Journal (EEMJ), 19: 1157-1166.
[40]Wu Y, Wang S, Ni Z, Li H, May L, Pu J. (2021). Emerging water pollution in the world’s least disturbed lakes on Qinghai-Tibetan Plateau. Environmental Pollution 272:116032. https://doi.org/10.1016/j.envpol.2020.116032
[41]Li K, Liu X, Herzschuh U, Wang Y. (2016). Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau. Scientific reports 6:1-9. https://doi.org/10.1038/srep24806
[42]Zhang X, Sun R, Zhu L. (2012). Lake water in the Yamzhog Yumco Basin in South Tibetan region: quality and evaluation. Journal of Glaciology and Geocryology 34:950-958. https://doi.org/10.1007/s11783-011-0280-z
[43]Feng J, Chen F, Hu H. (2017). Isotopic study of the source and cycle of sulfur in the Yamdrok Tso basin, Southern Tibet, China. Applied Geochemistry 85:61-72. https://doi.org/10.1016/j.apgeochem.2017.09.005
[44]Yang K, Wang J, Lei Y, Chen Y, Zhu L, Ding B, Qin J. (2016). Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. Journal of Geophysical Research: Atmospheres 121:7578-7591. https://doi.org/10.1002/2015JD024523
[45]Wang J, Zhu L, Daut G, Ju J, Lin X, Wang Y, Zhen X. (2009). Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology 10:149-158. https://doi.org/10.1007/s10201-009-0266-8
[46]Deng Y, Liu P, Conrad R. (2019). Effect of temperature on the microbial community responsible for methane production in alkaline NamCo wetland soil. Soil Biology and Biochemistry 132:69-79. https://doi.org/10.1016/j.soilbio.2019.01.024
[47]Kou Q, Lin X, Wang J, Yu S, Kai J, Laug A, Zhu L. (2021). Spatial distribution of n-alkanes in surface sediments of Selin Co Lake, central Tibetan Plateau, China. Journal of Paleolimnology 65:53-67. https://doi.org/10.1007/s10933-020-00148-8
[48]Guo Y, Zhang Y, Ma N, Xu J, Zhang T. (2019). Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmospheric research 216:141-150. https://doi.org/10.1016/j.atmosres.2018.10.006
[49]Chen Y, (2001). Hydrographic features of Serling Co, North Tibetan Plateau. Journal of Lake Sciences 13:21-28. https://doi.org/10.18307/20010104
[50]Erdős L, Zalatnai M, Bátori Z, Körmöczi L. (2014). Transitions between community complexes: a case study analysing gradients through mountain ridges in South Hungary. Acta Botanica Croatica 73:63-77. https://doi.org/10.2478/botcro-2013-0009
[51]Dale MR, Fortin MJ. (2014). Spatial analysis: a guide for ecologists. Cambridge :Cambridge University Press.425p.
[52]Zhang B. (2013). Study on Distribution characteristics and flux of organic matter, nitrogen and phosphorus in the soil of wlfz of Three Gorges Reservoir. Chongqing: Chongqing University.124p.
[53]Choesin D, Boerner REJ. (2002). Vegetation boundary detection: a comparison of two approaches applied to field data. Plant Ecology 158:85-96. https://doi.org/10.1023/A:1014720508155
[54]Kröger R, Khomo LM, Levick S, Rogers KH. (2009). Moving window analysis and riparian boundary delineation on the Northern Plains of Kruger National Park, South Africa. Acta Oecologica 35:573-580. https://doi.org/10.1016/j.actao.2009.05.007
[55]Lantman IMVS, Hertzog LR, Vandegehuchte ML, Martel A, Verheyen K, Lens L, Bonte D. (2020). Forest edges, tree diversity and tree identity change leaf miner diversity in a temperate forest. Insect Conservation and Diversity 13:10-22. https://doi.org/10.1111/icad.12358
[56]Zheng P, Shang X, Ye C, Li C, Zheng X, Dai W, Wei W. (2021). Delimiting the radiant belt toward land of lake-terrestrial ecotone with natural-wetland type. Research of Environmental Sciences 34:953-963. https://doi.org/10.13198/j.issn.1001-6929.2020.12.29
[57]Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C. (2008). Scale effects and human impact on the elevational species richness gradients. Nature 453:216-219. https://doi.org/10.1038/nature06812
[58]Shimono A, Zhou H, Shen H, Hirota M, Ohtsuka T, Tang Y. (2010). Patterns of plant diversity at high altitudes on the Qinghai-Tibetan Plateau. Journal of Plant Ecology 3:1-7. https://doi.org/10.1093/jpe/rtq002
[59]Huo J, Liu W, Liu J, Li H, Xu Y, Maria·N. (2017) Driving forces of desert plant characteristics in a desert oasis transitional zone in Driving forces of desert plant characteristics in a desert oasis transitional zone in FuKang, Xinjiang, China. Acta Ecologica Sinica 37:1-10. https://doi.org/10.5846/stxb201610282199
[59]Long T, Wang J, Li J, Feng Y, Wu B, Lu Q. (2017). Plant diversity and its environmental explanation in gobi district of northern Qinghai-Tibet Plateau, northwestern China. Journal of Beijing Forestry University 39:17-24. https://doi.org/10.13332/j.1000-1522.20170395
[61]Liu L. (2016) The relationship between plant diversity and climate factors in different grassland types of Xinjiang .Urumqi: Xinjiang Agricultural University. 68p.
[62]Fayech D, Tarhouni J. (2020). Climate variability and its effect on normalized difference vegetation index (NDVI) using remote sensing in semi-arid area. Modeling Earth Systems and Environment, in press. https://doi.org/10.1007/S40808-020-00896-6
[63]Wang Z, Yang G, Yi S, Chen S, Wu Z, Guan J, Zhao C, Zhao Q, Ye B. (2012). Effects of environmental factors on the distribution of plant communities in a semi-arid region of the Qinghai-Tibet Plateau. Ecological Research 27:667-675. https://doi.org/10.1007/s11284-012-0951-7
[64]Qiao B, Huang W, He T, Su Z, Feng Y. (2018). Analysis on the diversity of halophyte plant community and soil salinity in beach-wetland of Zhen-Lake of Ningxia. Acta Botanica Boreali-Occidentalia Sinica 38:324-331.
https://doi.org/10.7606/j.issn.1000-4025.2018.02.0324
[65]Tian L, Zhao L, Wu X, Fang H, Zhao Y, Yue G, Liu G, Chen H. (2017). Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake. Science of the Total Environment 607:855-864. https://doi.org/10.1016/j.scitotenv.2017.07.080
[66]Iqbal T. (2018). Rice straw amendment ameliorates harmful effect of salinity and increases nitrogen availability in a saline paddy soil. Journal of the Saudi Society of Agricultural Sciences, 17:445-453. https://doi.org/10.1016/j.jssas.2016.11.002
[67]Kou X, Li J, Liu H, Li B, Yu X, Cao X, Liu D, Wen L, Zhuo Y, Wang L. (2020). Characteristics of bacterial biodiversity and community structure in non-rhizosphere soils along zonal distribution of plants within littoral wetlands in inner Mongolia, China. Global Ecology and Conservation, in press. https://doi.org/10.1016/j.gecco.2020.e01310
[68]Li J, Hussain T, Feng X, Guo K, Chen H, Yang C, Liu X. (2019). Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses. Ecological Engineering 140:105593. https://doi.org/10.1016/j.ecoleng.2019.105593
[69]Zhao M, Zhao R, Zhang L, Zhao H, Zhou Y. (2019). Plant diversity and its relationship with soil factors in the middle reaches of the Heihe River based on the soil salinity gradient. Acta Ecologica Sinica 39:4116-4126. https://doi.org/10.5846/stxb201806231386
[70]Närhi P, Middleton M, Hyvönen E, Piekkari M, Sutinen R. (2010). Central boreal mire plant communities along soil nutrient potential and water content gradients. Plant and soil 331:257-264. https://doi.org/10.1007/s11104-009-0250-4
[71]Zhao X, He X, Yang X, Zhang X, Lv G. (2017). Effects of soil moisture and salt on desert plant biodiversity in Ebinur Lake Basin of Xinjiang, China. Journal of Arid Land Resources and Environment 31:76-82. https://doi.org/10.13448/j.cnki.jalre.2017.182
[72]Fang L, Li Y, Li F, Zhu HQ . (2019). Analysis of spatial variation of soil moisture–salinity–nutrient in Ebinur Lake wetlands, China. Journal of Agro-Environment Science 38:157-167. https://doi.org/10.11654/jaes.2018-0632
[73]Osborne LL, Kovacic DA. (1993). Riparian vegetated buffer strips in water‐quality restoration and stream management. Freshwater biology, 29:243-258. https://doi.org/10.1111/j.1365-2427.1993.tb00761.x
[74]Casanova MT, Brock MA. (2000). How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?. Plant Ecology 147:237-250. https://doi.org/10.1023/A:1009875226637
[75]Fu B, Wang Y, Xu P, Wang D. (2009). Changes in overland flow and sediment during simulated rainfall events on cropland in hilly areas of the Sichuan Basin, China. Progress in Natural Science 19:1613-1618. https://doi.org/10.1016/j.pnsc.2009.07.001
[76]Shen H, Tang Y, Washitani I. (2009). Ecological responses of Primula nutans to centimeter‐scale topographic and environmental variability in an alpine wetland. Ecological research 24:75-81. https://doi.org/10.1007/s11284-008-0483-3