1 Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer144, 1941-1953, doi:10.1002/ijc.31937 (2019).
2 Siegel, R., Miller, K. & Jemal, A. Cancer statistics, 2019. CA: a cancer journal for clinicians69, 7-34, doi:10.3322/caac.21551 (2019).
3 Seikkula, H. A. et al. The impact of socioeconomic status on stage specific prostate cancer survival and mortality before and after introduction of PSA test in Finland. International journal of cancer142, 891-898, doi:10.1002/ijc.31109 (2018).
4 Madan, R. A. & Arlen, P. M. Recent advances revolutionize treatment of metastatic prostate cancer. Future Oncol9, 1133-1144, doi:10.2217/fon.13.65 (2013).
5 Small, E. J. et al. Apalutamide and overall survival in non-metastatic castration-resistant prostate cancer. Annals of oncology : official journal of the European Society for Medical Oncology30, 1813-1820, doi:10.1093/annonc/mdz397 (2019).
6 Lerman, M. I. & Minna, J. D. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer research60, 6116-6133 (2000).
7 Ueda, K. et al. The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatin-induced resistance in human non-small-cell lung cancer cells. Cancer research66, 9682-9690, doi:10.1158/0008-5472.Can-06-1483 (2006).
8 Peng, Y. et al. TUSC4 functions as a tumor suppressor by regulating BRCA1 stability. Cancer research75, 378-386, doi:10.1158/0008-5472.Can-14-2315 (2015).
9 Liu, M. N. et al. Functional mechanism of the enhancement of 5-fluorouracil sensitivity by TUSC4 in colon cancer cells. Oncol Lett10, 3682-3688, doi:10.3892/ol.2015.3801 (2015).
10 Tang, Y., Jiang, L. & Tang, W. Decreased expression of NPRL2 in renal cancer cells is associated with unfavourable pathological, proliferation and apoptotic features. Pathol Oncol Res20, 829-837, doi:10.1007/s12253-014-9761-2 (2014).
11 Ji, L. et al. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer research62, 2715-2720 (2002).
12 Shen, K. et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature556, 64-69, doi:10.1038/nature26158 (2018).
13 Chen, Z. et al. High expression of NPRL2 is linked to poor prognosis in patients with prostate cancer. Human pathology76, 141-148, doi:10.1016/j.humpath.2018.02.011 (2018).
14 Chen, Z. et al. NPRL2 enhances autophagy and the resistance to Everolimus in castration-resistant prostate cancer. The Prostate79, 44-53, doi:10.1002/pros.23709 (2019).
15 Chen, X., Chen, Z., Zheng, B. & Tang, W. Targeting NPRL2 to enhance the efficacy of Olaparib in castration-resistant prostate cancer. Biochemical and biophysical research communications508, 620-625, doi:10.1016/j.bbrc.2018.11.062 (2019).
16 Ma, Y., Silveri, L., LaCava, J. & Dokudovskaya, S. Tumor suppressor NPRL2 induces ROS production and DNA damage response. Scientific reports7, 15311, doi:10.1038/s41598-017-15497-0 (2017).
17 Huang, N. et al. Downregulation of nitrogen permease regulator like-2 activates PDK1-AKT1 and contributes to the malignant growth of glioma cells. Mol Carcinog55, 1613-1626, doi:10.1002/mc.22413 (2016).
18 Jayachandran, G., Ueda, K., Wang, B., Roth, J. A. & Ji, L. NPRL2 sensitizes human non-small cell lung cancer (NSCLC) cells to cisplatin treatment by regulating key components in the DNA repair pathway. PloS one5, e11994, doi:10.1371/journal.pone.0011994 (2010).
19 Liu, S. & Liu, B. Overexpression of Nitrogen Permease Regulator Like-2 (NPRL2) Enhances Sensitivity to Irinotecan (CPT-11) in Colon Cancer Cells by Activating the DNA Damage Checkpoint Pathway. Medical science monitor : international medical journal of experimental and clinical research24, 1424-1433, doi:10.12659/msm.909186 (2018).
20 da Costa Prando, E., Cavalli, L. & Rainho, C. Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines. Epigenetics6, 1413-1424, doi:10.4161/epi.6.12.18271 (2011).
21 Shaulian, E. & Karin, M. AP-1 in cell proliferation and survival. Oncogene20, 2390-2400, doi:10.1038/sj.onc.1204383 (2001).
22 Xiang, D. M. et al. Oncofetal HLF transactivates c-Jun to promote hepatocellular carcinoma development and sorafenib resistance. Gut68, 1858-1871, doi:10.1136/gutjnl-2018-317440 (2019).
23 Thakur, N. et al. Smad7 Enhances TGF-β-Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells. iScience23, 101470, doi:10.1016/j.isci.2020.101470 (2020).
24 Thakur, N. et al. TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell Cycle13, 2400-2414, doi:10.4161/cc.29339 (2014).
25 Zhao, H. F., Wang, J. & Tony To, S. S. The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinase signaling in cancer: Alliance or contradiction? (Review). International journal of oncology47, 429-436, doi:10.3892/ijo.2015.3052 (2015).
26 Amirani, E., Hallajzadeh, J., Asemi, Z., Mansournia, M. & Yousefi, B. Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy. International journal of biological macromolecules164, 456-467, doi:10.1016/j.ijbiomac.2020.07.137 (2020).
27 Feng, F. et al. MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner. Neoplasia (New York, N.Y.)18, 213-222, doi:10.1016/j.neo.2016.01.006 (2016).
28 Quinn, D. I. et al. p53 nuclear accumulation as an early indicator of lethal prostate cancer. Br J Cancer121, 578-583, doi:10.1038/s41416-019-0549-8 (2019).
29 Liu, P. et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature508, 541-545, doi:10.1038/nature13079 (2014).