1. Katritsis, D.G., Is atrial fibrillation an inflammatory disorder? Eur Heart J, 2006. 27(7): p. 886; author reply 886.
2. Go, A.S., E.M. Hylek, K.A. Phillips, et al., Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. Jama, 2001. 285(18): p. 2370-5.
3. Kannel, W.B., P.A. Wolf, E.J. Benjamin, and D. Levy, Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol, 1998. 82(8a): p. 2n-9n.
4. Writing Group, M., D. Mozaffarian, E.J. Benjamin, et al., Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation, 2016. 133(4): p. e38-360.
5. Tomaselli, G.F., K.W. Mahaffey, A. Cuker, et al., 2020 ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol, 2020. 76(5): p. 594-622.
6. Torres, N., J. Martinez-Luscher, E. Porte, R. Yu, and S. Kaan Kurtural, Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates. Food Chem, 2021. 343: p. 128447.
7. Flores, I.R., M.S. Vasquez-Murrieta, M.O. Franco-Hernandez, et al., Bioactive compounds in tomato (Solanum lycopersicum) variety saladette and their relationship with soil mineral content. Food Chem, 2021. 344: p. 128608.
8. Sharma, A., M. Parikh, H. Shah, and T. Gandhi, Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon, 2020. 6(4): p. e03803.
9. Patel, R.V., B.M. Mistry, S.K. Shinde, et al., Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem, 2018. 155: p. 889-904.
10. Malishevskaia, I.V., T.A. Ilashchuk, and I.V. Okipniak, [Therapeutic efficacy of quercetin in patients with is ischemic heart disease with underlying metabolic syndrome]. Georgian Med News, 2013(225): p. 67-71.
11. Chekalina, N.I., S.V. Shut, T.A. Trybrat, et al., Effect of quercetin on parameters of central hemodynamics and myocardial ischemia in patients with stable coronary heart disease. Wiad Lek, 2017. 70(4): p. 707-711.
12. Lu, J., Y. Meng, R. Wang, and R. Zhang, Anti-arrhythmogenic effects of quercetin postconditioning in myocardial ischemia/reperfusion injury in a rat model. Journal of King Saud University - Science, 2020. 32(3): p. 1910-1916.
13. Silverman, E.K., H. Schmidt, E. Anastasiadou, et al., Molecular networks in Network Medicine: Development and applications. Wiley Interdiscip Rev Syst Biol Med, 2020. 12(6): p. e1489.
14. Ru, J., P. Li, J. Wang, et al., TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform, 2014. 6: p. 13.
15. Wang, X., Y. Shen, S. Wang, et al., PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res, 2017. 45(W1): p. W356-W360.
16. Daina, A., O. Michielin, and V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res, 2019. 47(W1): p. W357-W364.
17. Wishart, D.S., Y.D. Feunang, A.C. Guo, et al., DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res, 2018. 46(D1): p. D1074-d1082.
18. Gilson, M.K., T. Liu, M. Baitaluk, et al., BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res, 2016. 44(D1): p. D1045-53.
19. Davis, A.P., C.J. Grondin, R.J. Johnson, et al., The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res, 2017. 45(D1): p. D972-d978.
20. Rebhan, M., V. Chalifa-Caspi, J. Prilusky, and D. Lancet, GeneCards: integrating information about genes, proteins and diseases. Trends Genet, 1997. 13(4): p. 163.
21. Zhang, W., A. Bojorquez-Gomez, D.O. Velez, et al., A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat Genet, 2018. 50(4): p. 613-620.
22. Wang, Y., S. Zhang, F. Li, et al., Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res, 2020. 48(D1): p. D1031-d1041.
23. Yu, S., Q. Guo, T. Jia, et al., Mechanism of Action of Nicotiflorin from Tricyrtis maculata in the Treatment of Acute Myocardial Infarction: From Network Pharmacology to Experimental Pharmacology. Drug Des Devel Ther, 2021. 15: p. 2179-2191.
24. Szklarczyk, D., A. Franceschini, S. Wyder, et al., STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res, 2015. 43(Database issue): p. D447-52.
25. Morris, G.M., R. Huey, W. Lindstrom, et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 2009. 30(16): p. 2785-91.
26. Seeliger, D. and B.L. de Groot, Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des, 2010. 24(5): p. 417-22.
27. Knekt, P., R. Jarvinen, A. Reunanen, and J. Maatela, Flavonoid intake and coronary mortality in Finland: a cohort study. Bmj, 1996. 312(7029): p. 478-81.
28. Liu, Y., F. Wu, Y. Wu, et al., Mechanism of IL-6-related spontaneous atrial fibrillation after coronary artery grafting surgery: IL-6 knockout mouse study and human observation. Transl Res, 2021. 233: p. 16-31.
29. Tsioufis, C., D. Konstantinidis, I. Nikolakopoulos, et al., Biomarkers of Atrial Fibrillation in Hypertension. Curr Med Chem, 2019. 26(5): p. 888-897.
30. Aulin, J., Z. Hijazi, A. Siegbahn, et al., Serial measurement of interleukin-6 and risk of mortality in anticoagulated patients with atrial fibrillation: Insights from ARISTOTLE and RE-LY trials. J Thromb Haemost, 2020. 18(9): p. 2287-2295.
31. Aulin, J., A. Siegbahn, Z. Hijazi, et al., Interleukin-6 and C-reactive protein and risk for death and cardiovascular events in patients with atrial fibrillation. Am Heart J, 2015. 170(6): p. 1151-60.
32. Tammela, T., G. Zarkada, E. Wallgard, et al., Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 2008. 454(7204): p. 656-60.
33. Takahashi, N., Y. Ishibashi, T. Shimada, et al., Atrial fibrillation impairs endothelial function of forearm vessels in humans. J Card Fail, 2001. 7(1): p. 45-54.
34. Wang, K., Y. Liu, S. Huang, et al., Does an imbalance in circulating vascular endothelial growth factors (VEGFs) cause atrial fibrillation in patients with valvular heart disease? J Thorac Dis, 2019. 11(12): p. 5509-5516.
35. Passegué, E., W. Jochum, A. Behrens, R. Ricci, and E.F. Wagner, JunB can substitute for Jun in mouse development and cell proliferation. Nat Genet, 2002. 30(2): p. 158-66.
36. Yan, J., W. Kong, Q. Zhang, et al., c-Jun N-terminal kinase activation contributes to reduced connexin43 and development of atrial arrhythmias. Cardiovasc Res, 2013. 97(3): p. 589-97.
37. Yan, J., D.J. Bare, J. DeSantiago, et al., JNK2, a Newly-Identified SERCA2 Enhancer, Augments an Arrhythmic [Ca(2+)](SR) Leak-Load Relationship. Circ Res, 2021. 128(4): p. 455-470.
38. Liang, X., Q. Zhang, X. Wang, et al., Reactive oxygen species mediated oxidative stress links diabetes and atrial fibrillation. Mol Med Rep, 2018. 17(4): p. 4933-4940.
39. Moe, G.W., G. Laurent, L. Doumanovskaia, et al., Matrix metalloproteinase inhibition attenuates atrial remodeling and vulnerability to atrial fibrillation in a canine model of heart failure. J Card Fail, 2008. 14(9): p. 768-76.
40. Lewkowicz, J., M. Knapp, A. Tankiewicz-Kwedlo, et al., MMP-9 in atrial remodeling in patients with atrial fibrillation. Ann Cardiol Angeiol (Paris), 2015. 64(4): p. 285-91.
41. Iwamoto, R. and E. Mekada, ErbB and HB-EGF signaling in heart development and function. Cell Struct Funct, 2006. 31(1): p. 1-14.
42. Munk, M., A.A. Memon, J.P. Goetze, et al., Hypoxia changes the expression of the epidermal growth factor (EGF) system in human hearts and cultured cardiomyocytes. PLoS One, 2012. 7(7): p. e40243.
43. Büttner, P., S. Werner, P. Sommer, et al., EGF (Epidermal Growth Factor) Receptor Ligands in Atrial Fibrillation: From Genomic Evidence to the Identification of New Players. Circ Arrhythm Electrophysiol, 2019. 12(4): p. e007212.
44. Li, X., L. Gao, Z. Wang, et al., Lipid profile and incidence of atrial fibrillation: A prospective cohort study in China. Clin Cardiol, 2018. 41(3): p. 314-320.
45. Magnussen, C., T.J. Niiranen, F.M. Ojeda, et al., Sex Differences and Similarities in Atrial Fibrillation Epidemiology, Risk Factors, and Mortality in Community Cohorts: Results From the BiomarCaRE Consortium (Biomarker for Cardiovascular Risk Assessment in Europe). Circulation, 2017. 136(17): p. 1588-1597.
46. Lopez, F.L., S.K. Agarwal, R.F. Maclehose, et al., Blood lipid levels, lipid-lowering medications, and the incidence of atrial fibrillation: the atherosclerosis risk in communities study. Circ Arrhythm Electrophysiol, 2012. 5(1): p. 155-62.
47. Huxley, R.R., K.B. Filion, S. Konety, and A. Alonso, Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol, 2011. 108(1): p. 56-62.
48. Begieneman, M.P., L. Rijvers, B. Kubat, et al., Atrial fibrillation coincides with the advanced glycation end product N(ε)-(carboxymethyl)lysine in the atrium. Am J Pathol, 2015. 185(8): p. 2096-104.
49. Raposeiras-Roubín, S., B.K. Rodiño-Janeiro, L. Grigorian-Shamagian, et al., Evidence for a role of advanced glycation end products in atrial fibrillation. Int J Cardiol, 2012. 157(3): p. 397-402.
50. Fujisawa, K., N. Katakami, H. Kaneto, et al., Circulating soluble RAGE as a predictive biomarker of cardiovascular event risk in patients with type 2 diabetes. Atherosclerosis, 2013. 227(2): p. 425-8.
51. Li, D., K. Shinagawa, L. Pang, et al., Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation, 2001. 104(21): p. 2608-14.
52. Aschar-Sobbi, R., F. Izaddoustdar, A.S. Korogyi, et al., Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat Commun, 2015. 6: p. 6018.
53. Valente, A.J., T. Yoshida, J.D. Gardner, et al., Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal, 2012. 24(2): p. 560-568.
54. Onishi, R.M. and S.L. Gaffen, Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology, 2010. 129(3): p. 311-21.
55. Yue, H., W. Liang, J. Gu, et al., Comparative transcriptome analysis to elucidate the therapeutic mechanism of colchicine against atrial fibrillation. Biomed Pharmacother, 2019. 119: p. 109422.