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Abstract

Drug discovery is incredibly time-consuming and expensive, averaging over 10 years and

$985 million per drug. Calculating the binding affinity between a target protein and a ligand is

critical for discovering viable drugs. Although supervised machine learning (ML) models can

predict binding affinity accurately, they suffer from lack of interpretability and inaccurate feature

selection caused by multicollinear data. This study used self-supervised ML to reveal underlying

protein-ligand characteristics that strongly influence binding affinity. Protein-ligand 3D models

were collected from the PDBBind database and vectorized into 2422 features per complex.

LASSO Regression and hierarchical clustering were utilized to minimize multicollinearity

between features. Correlation analyses and Autoencoder-based latent space representations were

generated to identify features significantly influencing binding affinity. A Generative Adversarial

Network was used to simulate ligands with certain counts of a significant feature, and thereby

determine the effect of a feature on improving binding affinity with a given target protein. It was

found that the CC and CCCN fragment counts in the ligand notably influence binding affinity.

Re-pairing proteins with simulated ligands that had higher CC and CCCN fragment counts could

increase binding affinity by 34.99-37.62% and 36.83%-36.94%, respectively. This discovery

contributes to a more accurate representation of ligand chemistry that can increase the accuracy,

explainability, and generalizability of ML models so that they can more reliably identify novel

drug candidates. Directions for future work include integrating knowledge on ligand fragments

into supervised ML models, examining the effect of CC and CCCN fragments on fragment-based

drug design, and employing computational techniques to elucidate the chemical activity of these

fragments.
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INTRODUCTION

Drug discovery is the basis of the modern pharmaceutical market, and encompasses most

of the industry’s research and development funding [1]. On average, it takes 12-15 years and

$985 million to deliver a drug to market, demonstrating the exhaustive time and effort required

to complete the drug discovery process [2, 3]. Drug-Target Interaction (DTI) analysis is one of

the most critical parts of drug discovery, and it involves calculating the binding affinity between

a target protein and a ligand molecule so that appropriate ligand candidates for drugs can be

chosen. These ligand candidates go on to be included in in vitro experimentation in order to

identify lead compounds for the final drug. The affinity of a ligand to bind with a protein

depends on the atomic interactions between the ligand and the binding region (referred to as the

“binding pocket”) on the protein (Fig. 1) [4].

Calculating the binding affinity between a protein and ligand can be completed through

Virtual Screening (VS), where compounds are screened and binding affinity calculated using
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computer software [5] (Fig. 2). The “Scoring Function”, which is the function used to calculate

binding affinity, is critical for VS. Machine Learning (ML) algorithms have demonstrated

considerable promise as a scoring function compared to other standard function types [6]. Given

a set of training data, ML algorithms are able to learn chemical features from protein-ligand

models through supervised learning functions. This allows them to accurately predict the binding

affinity based on learned features that have statistically high influence [7-9, 11]. Beyond simply

predicting the binding affinity, supervised ML algorithms can be used to determine the

importance of certain pharmaco-like features in influencing the binding affinity, thereby

revealing important insights that can inform the development of innovative drugs [8]. However,

supervised ML algorithms suffer when multicollinearity - the presence of significant

intercorrelations between two or more independent variables - exist in a dataset [12, 13]. This is

because supervised feature analysis methods, the most popular being Random Forest feature
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selection, rely on differential performance with/without certain predictor variables in order to

determine the importance of that variable [14]. Therefore, when predictor variables are highly

intercorrelated with one another, calculated “feature importance” scores do not accurately

represent the independent contribution one predictor variable has to a response. In addition,

supervised nonlinear models (e.g. Random Forests or Deep Neural Networks) that are successful

in predicting a response output accurately suffer from lack of interpretability, meaning that

informative patterns learned by the algorithm cannot be easily extracted. Therefore, supervised

learning models have been given the term“black box”, and are problematic for analyzing the

features patterns from large-scale datasets [15, 16].

On the other hand, correlation analysis techniques such as Spearman’s Rank Correlation

and R2 values have demonstrated high interpretability and computational efficiency in analyzing

molecular binding properties [17, 78]. In addition, self-supervised learning techniques such as

Autoencoder Networks and Generative Adversarial Networks have been shown to be useful in

learning low-dimensional representations from high-dimensional datasets, thereby capturing

significant patterns that can verify the quantitative importance of a feature [18, 19]. Correlation

analysis and self-supervised learning techniques have not yet been applied to reveal the

differences between protein-ligand complexes specifically in regards to their binding affinity.

This is a research gap that can be filled to address the “black box” nature of supervised machine

learning algorithms and also reveal significant biochemical insights into the most important

features of protein-ligand complexes that influence their binding affinity.

Objectives:

There is a pressing need to more reliably identify and analyze biochemical features that

influence binding affinity. Current literature either suffer from drawbacks in interpretability

caused by supervised learning or do not account for the multicollinearity present in

protein/ligand feature datasets. The objectives of this study are three-fold: 1) Account and rectify

multicollinearity present between features of protein-ligand complexes, 2) Identify specific

biochemical features responsible for high variance in binding affinities, and 3) Quantify the

effect of these features on improving the binding affinity of drug complexes.

Gathering a greater understanding of which features influence binding affinity is

necessary for developing ML algorithms that achieve higher hit rates during VS. VS will thereby
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be more efficient and effective, significantly improving the critical stages of early drug

discovery.

METHODS

Dataset Preprocessing:

In this study, protein-ligand models were collected from the PDBBind database [19, 41].

The 2015 “Refined” set and the 2015 “Core” set were downloaded. In order to extract relevant

quantitative features of each model, a workflow described in [40] was utilized (Fig. 3).

For each complex, 2422 quantitative features were collected. The frequency of 2282

unique substructural molecular fragments were collected. The remaining 140 features were

frequencies of amino-acid interactions, with seven types of interactions per amino acid: 1)

Hydrophobic, 2) Face-to-face aromatic, 3) Edge-to-edge aromatic, 4) H-bond accepted by ligand,
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5) H-bond donated by ligand, 6) Ionic bond (ligand partially negative), and 7) Ionic bond (ligand

partially positive). Files with a resolution of <2.5 Å were retained to ensure the accuracy of all

feature counts, resulting in 3481 complexes from the “Refined” set and 180 from the “Core” set.

The experimentally determined binding affinity (in pKd) for each complex was also collected

from the PDBBind database to serve as a target variable.

Minimizing Multicollinearity:

Supervised ML models suffer from lack of interpretability when multicollinearity is

present in a dataset [12, 13]. Therefore, the variance inflation factor (VIF) of each feature was

calculated to quantitatively determine multicollinearity. VIF measures the factor by which the

variance of a feature’s estimated ordinary least squares (OLS) regression coefficient is increased

due to correlation with other features [20].

It was observed that the VIF of most features was significantly above the recommended

value of 10 [21]. Therefore, Standard Scaling and LASSO Regression were used to identify and

remove unimportant features (those with a regression coefficient of 0) from the dataset [86].

After the regression was performed, significantly high VIF were still observed in many features.

Hierarchical clustering was used to cluster the remaining features. One feature from each cluster

was selected so that features providing redundant information were removed [87]. The remaining

34 features all had VIF < 10.

To ensure that the 34 features could accurately predict binding affinity, two Random

Forest Regressors were trained on the “Refined” set (hereon referred to as the training set) and

tested on the “Core” set (hereon referred to as the testing set) to predict binding affinity. The first

regression tree was trained/tested on all 2422 features whereas the second was trained/tested on

the 34 selected features. The R2, Root Mean Squared Error (RMSE), Mean Absolute Error

(MAE), and Pearson Correlation Coefficient (PCC) between the predictions and ground-truth

values on the test set was compared for each regressor to ensure that the 34 features retained

significant predictive capability. A Random Forests model was used because of its exceptional

predictive performance compared to more standard models such as Linear Regression, which

cannot accurately represent the information stored in non-linear datasets [26].

Correlation Analysis:

Supervised feature importance calculation methods suffer from being uninterpretable,

coined with the term “black box” [15, 16]. Therefore, the correlation between features was
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analyzed to determine potential significant features [80, 81]. The Spearman Correlation between

each feature and binding affinity was calculated. In addition, the adjusted R2 value was

calculated between each pair/triplet of features and binding affinity to ensure that features with

high independent influence were not insignificant in the presence of certain other features [79,

82, 83]. Each of the three resulting lists were ordered from highest correlation to lowest. The

features that were common among the top 25th percentile of correlations in each list were

extracted (Fig. 4). The 25th percentile was chosen as the threshold because it was the maximum

percentile in which not every one of the 34 features were common among that percentile

between all the three lists. It was observed that 8 features were common among the top 25th

percentile of each list. The description of each feature is discussed in the Results section.

Autoencoder to Filter Features:

It has been shown in current literature that autoencoders are effective self-supervised

models for learning low-dimensional representations of multivariate data [18]. Therefore, an

autoencoder was designed and implemented to analyze complexes with high and low counts of
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each of the 8 features. A three-stage autoencoder was designed and implemented to compress the

34-feature dataset into two dimensions (Fig. 5).

The autoencoder was trained on the training set for 30 epochs with a batch size of 32. The

testing set was used for validation at each training epoch. In order to use the autoencoder to

verify if the 8 features were influential, the “latent space” of the autoencoder was extracted. This

refers to the 2-dimensional output produced by the third Dense Layer. This is because if the

latent space showed a difference in binding affinity between complexes with high and low counts

of a certain feature, then that feature must be influential on the complex’s binding affinity [18].

After training concluded, the Encoder and Bottleneck layers were used to calculate the latent

space representation for all complexes in the training set. This resulted in a 2D representation of

every complex in the training set.

For each of the 8 features, the 90th and 10th percentile of counts in the training set were

calculated. Only complexes with a feature count greater than or equal to the 90th percentile or

less than or equal to the 10th percentile for that feature were extracted. Each of these complexes'

latent space was graphed on a 2D heatmap, with the “heat” determined by the binding affinity of

that complex. This was repeated for each of the 8 features to determine if high/low counts of a

certain feature held a significant influence on binding affinity in the latent space representation.

Following Cohen’s Effect Size, which has shown to be useful for analyzing biomedical and
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molecular datasets, any feature whose heatmap exhibited an adjusted R2 value greater than 0.25

was determined to have a “large” Effect Size on binding affinity [22, 77, 84]. It was determined

that out of the 8 features, the CC and CCCN substructural molecular fragments had large Effect

Sizes. No augmented atoms or amino acid residue counts exhibited large Effect Sizes.

Generative Adversarial Network to Simulate Novel Higher-Affinity Complexes:

Although the autoencoder was utilized to determine the significance of CC and CCCN

fragment counts, the effect of these features on improving binding affinity was not examined.

Analyzing the ability of the feature counts to improve the binding affinity of weakly-bound

complexes is important to understand the application of these features to real-world VS and drug

design. Generative Adversarial Networks (GANs) have been shown to be effective at generating

synthetic data for molecular datasets and learning representations of protein-ligand complexes

[19, 71-73]. They are also successful at generating de novo molecules, accurately simulating the

development/discovery of new ligands for inclusion in novel drugs [74-76]. Therefore, in order

to quantify the effect of significant features on increasing binding affinity, a GAN proposed in

[23] was implemented and trained on the 34-feature training set. This GAN utilizes a Long

Short-Term Memory (LSTM)-based generator and Multi-Layer Perceptron (MLP)-based

discriminator. After training concluded, it was used to generate 3481 synthetic protein-ligand

complexes, mirroring the size of the training set. Following [23], the quality of these synthetic

complexes was determined by calculating a “similarity score”: the Spearman Correlation

between the logarithmic transformations of the means and standard deviations of all features in

each dataset (real and synthetic). The log-transformed means and standard deviations for each

dataset were concatenated to produce two lists that were used to calculate the Spearman

Correlation.

After it was verified that the synthetic data was sufficiently representative of the training

set, each of the high-Effect-Size features were used to identify ligands in the synthetic dataset

that could improve the binding affinity of low-affinity (chosen as pKd<4 in this study)

complexes from the testing set.

First, 26 low-affinity complexes were identified in the testing set. Every ligand in the

synthetic dataset that had a certain feature count less than or equal to n higher than the same

feature count in the low-affinity complex’s ligand was selected. For each selected ligand, its

features were concatenated into a list with the amino acid residue counts of the low-affinity

8



complex’s protein. This list was a 34-feature vector, representing a new protein-ligand complex

made up of the low-affinity complex’s protein and a synthetic ligand. A Grid-Search-optimized

Random Forests model, which was trained on the training set and achieved a high PCC on the

testing set of 0.75 and low RMSE of 1.58, was utilized to predict the binding affinity of this new

complex.

Although the binding affinity of the original complex was already available, the Random

Forests model was used to predict the binding affinity of the original complex as well, in order to

account for prediction error when comparing it with the predicted values of the synthetic

complexes. The percent increase from the original complex’s predicted binding affinity to the

mean of the synthetic complex binding affinities was calculated and recorded for each

low-affinity complex. Each result was checked for statistical significance using the Cumulative

Distribution Function (CDF) test on the Z-Score-normalized values of the entire distribution of

binding affinities (predicted values of synthetic complexes and predicted value of original

complex) [24]. Only percent increases with an associated CDF value below 0.05 were considered

statistically significant. Before performing the CDF test, the distribution was first determined to

be approximately normal through the Kolmogorov–Smirnov test [25]. Distributions were

concluded to be approximately normal if the p-value of the Kolmogorov-Smirnov test was below

0.05. This entire workflow was repeated for all integer values of n from 2-10 for a given feature,

with the CC fragment count and CCCN fragment count being the features of interest (Fig. 6).
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RESULTS AND DISCUSSION

Minimizing Multicollinearity:

The two Random Forests models trained on the 2422-feature dataset and 34-feature

dataset, respectively, did not show significantly different predictive performance on their

corresponding testing sets (Table #1). All performance statistics were equivalent between both

models with the exception of 0.01 increase in Pearson Correlation Coefficient for the

2422-feature model. This suggests that the 34 non-collinear features accurately represent the

chemical properties influencing binding affinity stored in the original “Refined” dataset.

Therefore, the 34 features were deemed sufficient for use in further analysis.

Correlation Analysis:

The correlation analysis described in the Methods section resulted in eight features that

were common among the top 25% of correlations in each group (Table #2). These eight features

were considered to likely hold significant influence on the binding affinity of a complex.
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Autoencoder to Filter Features:

The autoencoder described in the Methods section was evaluated by measuring the

training and testing loss/accuracy over the training period. The autoencoder learned to accurately

reconstruct a complex’s features from a 2D representation, as it exhibited a high testing accuracy

of 0.9667, a low testing loss of 0.8735, and exponential-like training loss with a final training

loss of 0.9297 (Fig. 7). This suggests that the autoencoder was effective in extracting an accurate

latent space representation of all complexes in the training set.

As described in the Methods section, complexes with feature counts above the 90th

percentile or below the 10th percentile were graphed on a heatmap using both latent space

dimensions and the binding affinity as the “heat”. The CC and CCCN fragment count features

demonstrated high Effect Size, with R2 values of 0.39 and 0.30, respectively (Fig. 8C-D). No

other features demonstrated high Effect Size (Fig. 8) [22]. This suggests that the CC and CCCN

fragment count features play a significant chemical role in increasing binding affinity, and that

they are distinctly more influential than any other feature [27].
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Generative Adversarial Network to Simulate Novel Higher-Affinity Complexes:

The GAN described in the Methods section produced 3481 synthetic complexes, the

quality of which was calculated by comparing the means and standard deviations of each feature

between the original and synthetic dataset. It was observed that there is a strong correlation

between the properties of the original and synthetic dataset, as evidenced by a high “similarity

score” of 0.9912 (Fig. 9) [23]. This suggests that the synthetic data was accurately representative

of the real dataset.

26 Low-affinity (pKd < 4) complexes in the testing set were selected (Table #3). Ligands
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Table #3 (Continued)

in the synthetic dataset were filtered for high CC/CCCN counts and concatenated with the

proteins from the low-affinity complexes to determine the effect of each feature on increasing the

binding affinity of weakly-bound complexes. Due to non-collinearity, the effect of other features

on binding affinity as lurking variables was minimized. The Kolmogorov-Smirnov test and CDF

test were utilized to determine the statistical significance of a given increase in binding affinity.

Replacing ligands in low-affinity complexes with ligands that had higher CC fragment counts

resulted in an average increase in binding affinity of 34.99-37.62% (Table #4). This suggests that
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a higher CC fragment count can significantly increase the binding affinity of a ligand with a

target protein [28-30]. No significant correlation between increase index (value of n by which for

a generated ligand to be selected, it must have had a CC count less than or equal to n greater than

the CC count in the low-affinity ligand) and mean increase in binding affinity was observed. This

suggests that increasing the CC fragment count can consistently increase binding affinity, but

that increasing the amount by which the CC fragment count is increased does not necessarily

result in a greater binding affinity. A positive relationship between CC increase index and

percent of increases that were statistically significant was observed. This is supported by the fact

that increasing the value of n also resulted in a greater number of low-affinity complexes

experiencing statistically significant increases. This collectively suggests that ligands with

greater CC fragment counts more reliably result in greater binding affinities.

The same evaluation process was conducted on the CCCN fragment count feature.

Replacing ligands in low-affinity complexes with ligands that had higher CCCN fragment counts

results in an average statistically significant increase in binding affinity of 36.83%-39.64%

(Table #5). This suggests that a higher CCCN fragment count can significantly increase the

binding affinity of a ligand with a target protein [28-30].
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No significant correlation between CCCN increase index and mean increase in binding

affinity was observed. This suggests that increasing the CCCN fragment count can consistently

increase binding affinity, but that increasing the amount by which the CCCN fragment count is

increased does not necessarily result in a greater binding affinity. A positive relationship between

CCCN increase index and percent of increases that were statistically significant was observed.

This is supported by the fact that increasing the value of n also resulted in a greater number of

low-affinity complexes experiencing statistically significant increases. This collectively suggests

that ligands with greater CCCN fragment counts more reliably result in greater binding affinities.

It was also observed that certain complexes experienced statistically significant increases

in binding affinity in both groups. These complexes are those with I.D. 5, 24, 27, 33, 102, 132,

133, 137, 141, 145, and 169. Several complexes did not experience any statistically significant

increase in binding affinity. These complexes are those with I.D. 1, 14, 50, 65, 84, 93, 113, and

125. This suggests that CC and CCCN fragments may play a varied chemical role in different

low-affinity complexes depending on the ligand’s binding mode properties [31, 32].

CONCLUSIONS

In this study, three main objectives were achieved: 1) Multicollinearity was minimized in

a dataset consisting of 2422 features per protein-ligand complex, 2) Specific ligand fragments

were discovered to have a notable chemical influence on increasing binding affinity, and 3) It

was shown that increasing the count of these fragments can significantly improve the binding

affinity of protein-ligand complexes. The methods utilized in this study improved upon current

literature by: 1) Minimizing the bias in results occurring from multicollinear datasets, and 2)

Increasing the reliability and interpretability of feature selection by utilizing a unique pipeline of

self-supervised learning and correlation analysis techniques instead of supervised learning

methods. It is concluded in this study that CC and CCCN ligand fragments are chemically

significant in determining the binding affinity of protein-ligand complexes and can determine

ligands that notably improve binding affinity when bound to a target protein.

There are several applications of this work to real-world drug discovery. Understanding

the influence of CC and CCCN fragments on binding affinity will produce a more accurate

representation of ligand chemical activity, aiding researchers to build ML algorithms that more
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accurately predict binding affinity [33-36]. Integrating previous knowledge into supervised ML

algorithms has been shown to increase predictive performance by an entire order of magnitude,

demonstrating the significance of the knowledge uncovered in this study to supervised ML

research [37, 39, 40]. More importantly, pre-training knowledge on ligand fragments will result

in ML models that overfit less, making them more generalizable to new datasets and thus reliable

for analyzing novel drug candidates [43-45]. Incorporating prior knowledge can also increase the

explainability of supervised ML models, further reducing their “black box” effect [38].

Increasing the accuracy, generalizability, and explainability of supervised ML models using

knowledge such as that concluded in this study will improve industry-wide VS processes by

more reliably identifying ligand hits for inclusion in novel drug compounds [41, 42].

The effect of improving ML models for effective VS are profound. It has already been

demonstrated that for certain proteins such as Interleukin-1 receptor associated kinase-1

(IRAK1), ML models can increase novel ligand hit rates by over 1000% compared to standard

scoring functions [46]. Using the information revealed in study to develop more accurate,

generalizable, and explainable ML models can result in similar increases across wide ranges of

proteins because models will be able to screen novel ligands without significant decreases in

reliability. Using the conclusion of this study as well as others to develop more robust ML

models is therefore critical for identifying promising drug candidates for innovative medicines.

It is significant to note that the discoveries of this study is useful in other scientific

contexts, such as synthetic drug design. Using known information on fragments such as the two

focused on in this study (CC and CCCN), synthetic ligands can be chemically designed to bind

optimally to a target protein [42, 43]. Computational tools (including, but not limited to, ML

models) can also be developed to design novel synthetic drugs using known relationships

between ligand fragments [44-46]. Gathering a clear, data-driven understanding of ligand

fragment activity is a significant method by which synthetic drug design for new medications can

be improved.

In industrial fields such as process chemistry, ligand fragment activity with target proteins

can be used to direct enzyme evolution in biocatalytic reactions [52-55]. Biocatalysis involves

the binding of a small molecule (ligand) and an enzyme (protein) to catalyze the chemical

reaction of the small molecule [52]. It has been shown that ligand features can guide the
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development of metathesis catalysts and nitrile hydration catalysts, demonstrating the varied

applications of ligand feature information [56-58].

Therefore, it is evident that the significant ligand features elucidated in this study have

important applications to Virtual Screening research, synthetic drug design, and industrial

processes such as biocatalysis.

LIMITATIONS AND FUTURE WORK

It is significant to note that there are limitations and directions for future work based on

this study’s methodology and results.

In this study, several arbitrary thresholds were chosen for the purpose of experimentation.

For example, it was chosen that complexes with feature counts above the 90th percentile or

below the 10th percentile would be considered in determining that feature’s influence on binding

affinity. It was also chosen that the range of n values for the GAN-based simulative testing would

be 2-10. Using statistical techniques to guide the decision of all thresholds may lead to slightly

different results [75]. Further, employing additional statistical tests such as confidence intervals

may increase the reliability of the results [77]. In addition, due to online availability and

computational limits, only the PDB-Bind database was analyzed in this study. However,

conducting the same methodology on different datasets may support or refute the results of this

study [85].

There are several other directions for future work based on the methodology of this study.

For instance, other self-supervised and unsupervised learning algorithms such as Principal

Component Analysis, t-Distributed Stochastic Neighbor Embedding, and Variational

Autoencoders can be used to reveal significant feature-based influences on binding affinity

[60-63]. Analyzing the relationship between features instead of just independent features’

influence can also reveal significant chemical phenomena that influence binding affinity [64, 65].

In addition to the methodology, the results of this study can lead to future work. For

example, integrating the importance of CC and CCCN fragments as prior knowledge into ML

models may lead to improved predictions of binding affinity [37, 39, 40, 59]. Investigating the

effect of these fragments on fragment-based drug design can lead to in-silico techniques that

directly improve synthetic drug design [66, 67]. Most importantly, utilizing methods such as 3D

quantitative structure–activity relationships (3D-QSAR) will help expand on this study by
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revealing the specific chemical reason why CC and CCCN fragments improve binding affinity

[68-70]. Therefore, there are several exciting directions for future chemical research based on the

methodology and conclusions of this study.
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