1. Holub O, Seufferheld MJ, Gohlke C, Govindjee, Clegg RM. Fluorescence lifetime imaging (FLI) in real-time - A new technique in photosynthesis research. In: Photosynthetica. Springer Netherlands; 2001. p. 581–99. doi:10.1023/A:1012465508465.
2. Nedbal L, Soukupova J, Whitmarsh J, Trtilek M. Postharvest Imaging of Chlorophyll Fluorescence from Lemons Can Be Used to Predict Fruit Quality. Photosynthetica. 2000;38:571–9. doi:10.1023/A:1012413524395.
3. Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environmental Health: A Global Access Science Source. 2016;15:19. doi:10.1186/s12940-016-0117-0.
4. Mohapatra PK, Mohanty RC. Growth pattern changes of Chlorella vulgaris and Anabaena doliolum due to toxicity of dimethoate and endosulfan. Bull Environ Contam Toxicol. 1992;49:576–81. doi:10.1007/BF00196301.
5. Tuba Z, Lichtenthaler HK, Csintalan Z, Pócs T. Regreening of Desiccated Leaves of the Poikilochlorophyllous Xerophyta scabrida upon Rehydration. J Plant Physiol. 1993;142:103–8.
6. Mohapatra PK, Schiewer U. Effect of dimethoate and chlorfenvinphos on plasma membrane integrity of Synechocystis sp. PCC 6803. Ecotoxicol Environ Saf. 1998;41:269–74.
7. Mohapatra PK, Schubert H, Schiewer U. Effect of dimethoate on photosynthesis and pigment fluorescence of Synechocystis sp. PCC 6803. Ecotoxicol Environ Saf. 1997;36:231–7.
8. Jena S, Acharya S, Mohapatra PK. Variation in effects of four OP insecticides on photosynthetic pigment fluorescence of Chlorella vulgaris Beij. Ecotoxicol Environ Saf. 2012;80:111–7.
9. Mohapatra PK, Schubert H, Schiewer U. Short term toxicity effect of dimethoate on transthylakoid pH gradient of intact Synechocystis sp. PCC 6803 cells. Bull Environ Contam Toxicol. 1996;57:722–8. doi:10.1007/s001289900249.
10. Pandey JK, Srivastava P, Yadav RS, Gopal R. Chlorophyll fluorescence spectra as an indicator of X-ray + EMS-induced phytotoxicity in safflower. Spectrosc (New York). 2012;27:207–14.
11. Buschmann C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research. 2007;92:261–71. doi:10.1007/s11120-007-9187-8.
12. Lichtenthaler HK, Rinderle U. The Role of Chlorophyll Fluorescence in The Detection of Stress Conditions in Plants. C R C Crit Rev Anal Chem. 1988;19:S29–85. doi:10.1080/15476510.1988.10401466.
13. Hák R, Lichtenthaler HK, Rinderle U. Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves. Radiat Environ Biophys. 1990;29:329–36. doi:10.1007/BF01210413.
14. D’Ambrosio N, Szabo K, Lichtenthaler HK. Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown. Radiat Environ Biophys. 1992;31:51–62. doi:10.1007/BF01211512.
15. Buschmann, C.; Schweiger, J.; Lichtenthaler, H.K.; Richter P. Application of the Karlsruhe CCD-OMA LIDAR-fluorosensor in stress detection of plants. 1997;:548–54. https://agris.fao.org/agris-search/search.do?recordID=DE98G3033. Accessed 12 Feb 2021.
16. R. Gopal, K. B. Mishra, M. Zeeshan SMP and MMJ. Laser-induced chlorophyll fluorescence spectra of mung plants growing under nickel stress on JSTOR. Current Science. 2002;:880–4. https://www.jstor.org/stable/24107093?seq=1. Accessed 12 Feb 2021.
17. Latif U, Farid M, Rizwan M, Ishaq HK, Farid S, Ali S, et al. Physiological and Biochemical Response of Alternanthera bettzickiana (Regel) G. Nicholson under Acetic Acid Assisted Phytoextraction of Lead. Plants. 2020;9:1084. doi:10.3390/plants9091084.
18. Lucier GW, Menzer RE. Metabolism of Dimethoate in Bean Plants in Relation to Its Mode of Application. J Agric Food Chem. 1968;16:936–45. doi:10.1021/jf60160a020.
19. Pandey JK, Gopal R. Laser-induced chlorophyll fluorescence: A technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant. In: Journal of Fluorescence. J Fluoresc; 2011. p. 785–91. doi:10.1007/s10895-010-0771-5.
20. Shizhong T, Zan L, Jianhua W, Yongyuan Z. Growth of Chlorella vulgaris in cultures with low concentration dimethoate as source of phosphorus. Chemosphere. 1997;35:2713–8.
21. Sprankle P, Meggitt WF, Penner D. Rapid Inactivation of Glyphosate in the Soil. Weed Sci. 1975;23:224–8. doi:10.1017/s0043174500052917.
22. Teramura AH, Sullivan JH. Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynthesis Research. 1994;39:463–73. doi:10.1007/BF00014599.
23. Ouzounidou G. Cu-ions mediated changes in growth, chlorophyll and other ion contents in a Cu-tolerant Koeleria splendens. Biol Plant. 1995;37:71–8. doi:10.1007/BF02913000.
24. Peterson RB, Oja V, Laisk A. Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth Res. 2001;70:185–96. doi:10.1023/A:1017952500015.
25. Šiffel P, Šesták Z. Low Temperature Fluorescence Spectra of Chloroplasts: Methodical Aspects and Possible Applications. In: Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing. Springer Netherlands; 1988. p. 55–61. doi:10.1007/978-94-009-2823-7_6.
26. Butler WL. Chlorophyll Fluorescence: A Probe for Electron Transfer and Energy Transfer. In: Photosynthesis I. Springer Berlin Heidelberg; 1977. p. 149–67. doi:10.1007/978-3-642-66505-9_8.
27. Schreiber U, Kuhl M, Klimant I, Reising H. Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Photosynth Res. 1996;47:103–9. doi:10.1007/BF00017758.
28. Vogelmann TC, Han T. Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant, Cell Environ. 2000;23:1303–11. doi:10.1046/j.1365-3040.2000.00649.x.
29. Babani F, Lichtenthaler HK. Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. J Plant Physiol. 1996;148:555–66.