[1] Sanders, M. E., Lenoir‐Wijnkoop, I., Salminen, S., Merenstein, D. J., Gibson, G. R., Petschow, B. W., ... & Pot, B. (2014). Probiotics and prebiotics: prospects for public health and nutritional recommendations. Annals of the New York Academy of Sciences, 1309(1), 19-29.
[2] AlFaleh, K., & Anabrees, J. (2014). Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evidence‐Based Child Health: A Cochrane Review Journal, 9(3), 584-671.
[3] Goldenberg, J. Z., Yap, C., Lytvyn, L., Lo, C. K. F., Beardsley, J., Mertz, D., & Johnston, B. C. (2017). Probiotics for the prevention of Clostridium difficile ‐ associated diarrhea in adults and children. Cochrane Database of Systematic Reviews, (12).
[4] Aponte, G. B., Mancilla, C. A. B., Carreazo, N. Y., & Galarza, R. A. R. (2013). Probiotics for treating persistent diarrhoea in children. Cochrane Database of Systematic Reviews, (8).
[5] Miller, L. E., & Ouwehand, A. C. (2013). Probiotic supplementation decreases intestinal transit time: meta-analysis of randomized controlled trials. World journal of gastroenterology: WJG, 19(29), 4718.
[6] Moayyedi, P., Ford, A. C., Talley, N. J., Cremonini, F., Foxx-Orenstein, A. E., Brandt, L. J., & Quigley, E. M. (2010). The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut, 59(3), 325-332.
[7] Hao, Q., Dong, B. R., & Wu, T. (2015). Probiotics for preventing acute upper respiratory tract infections. Cochrane Database of Systematic Reviews, (2).
[8] Azad MAK, Sarker M, Wan D. (2018). Immunomodulatory Effects of Probiotics on Cytokine Profiles. Biomed Res Int. 23 (2018).
[9] Gill, H. S., Cross, M. L., Rutherford, K. J., & Gopal, P. K. (2001). Dietary probiotic supplmentation to enhance cellular immunity in the elderly. British journal of biomedical science, 58(2), 94.
[10] Wood, C., Keeling, S., Bradley, S., Johnson-Green, P., & Green-Johnson, J. M. (2007). Interactions in the mucosal microenvironment: vasoactive intestinal peptide modulates the down-regulatory action of Lactobacillus rhamnosus on LPS-induced interleukin-8 production by intestinal epithelial cells. Microbial Ecology in Health and Disease, 19(3), 191-200.
[11] Villena, J., Medina, M., Vintiñi, E., & Alvarez, S. (2008). Stimulation of respiratory immunity by oral administration of Lactococcus lactis. Canadian journal of Microbiology, 54(8), 630-638.
[12] Yadav, H., Jain, S., & Sinha, P. R. (2008). Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. The Journal of Dairy Research, 75(2), 189.
[13] Di Mauro, A., Neu, J., Riezzo, G., Raimondi, F., Martinelli, D., Francavilla, R., & Indrio, F. (2013). Gastrointestinal function development and microbiota. Italian Journal of Pediatrics, 39(1), 15.
[14] Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews neuroscience, 13(10), 701-712.
[15] Mayer, E. A. (2011). Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience, 12(8), 453-466.
[16] Rhee, S. H., Pothoulakis, C., & Mayer, E. A. (2009). Principles and clinical implications of the brain–gut–enteric microbiota axis. Nature reviews Gastroenterology & hepatology, 6(5), 306.
[17] Komada, M., Takao, K., & Miyakawa, T. (2008). Elevated plus maze for mice. JoVE (Journal of Visualized Experiments), (22), e1088.
[18] De Young, L. M., Kheifets, J. B., Ballaron, S. J., & Young, J. M. (1989). Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents and actions, 26(3-4), 335–341.
[19] Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical biochemistry, 126(1), 131-138.
[20] Draper HH, Hadley M. Malondialdehyde determination as índex of lipid peroxidation. Methods Enzymol. 1990; 186:421–31
[21] Erben, U. et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol 7, 4557-4576 (2014).
[22] Grenham, S.; Clarke, G.; Cryan, J. F.; Dinan, T. G. Brain-gut-microbe communication in health and disease Front. Physiol. 2011, 7 (2) 94
[23] Saulnier, D. M.; Ringel, Y.; Heyman, M. B.; Foster, J. A.; Bercik, P.; Shulman, R. J.; Versalovic, J.; Verdu, E. F.; Dinan, T. G.; Hecht, G.; Guarner, F. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes. 2013, 4 (1) 17– 27
[24] Conti, L. H.; Costello, D. G.; Martin, L. A.; White, M. F.; Abreu, M. E. Mouse strain differences in the behavioral effects of corticotropin-releasing factor (CRF) and the CRF antagonist alpha-helical CRF9–41 Pharmacol., Biochem. Behav. 1994, 48 (2) 497– 503
[25] Kalinichev, M.; Bate, S. T.; Coggon, S. A.; Jones, D. N. Locomotor reactivity to a novel environment and sensitivity to MK-801 in five strains of mice Behav. Pharmacol. 2008, 19 (1) 71– 75
[26] Park, A. J.; Collins, J.; Blennerhassett, P. A.; Ghia, J. E.; Verdu, E. F.; Bercik, P.; Collins, S. M. Altered colonic function and microbiota profile in a mouse model of chronic depression Neurogastroenterol. Motil. 2013, 25 (9) 733– e575
[27] Barden N. Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. J. Psychiatry Neurosci., 29 (2004), pp. 185-193
[28] Heijtz, R.D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A., 108 (2011), pp. 3047-3052
[29] Neufeld, K.M. et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil., 23 (2011), pp. 255-264
[30] Clarke, G. et al. The microbiome-gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry (2012), 10.1038/mp.2012.77
[31] Choi, H. J., Lee, N. K., & Paik, H. D. (2015). Health benefits of lactic acid bacteria isolated from kimchi, with respect to immunomodulatory effects. Food Science and Biotechnology, 24, 783– 789.
[32] Tang J, Xu L, Zeng Y, Gong F (2021). Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol. 91(107272).
[33] Réus, G. Z., Fries, G. R., Stertz, L., Badawy, M., Passos, I. C., Barichello, T., … Quevedo, J. (2015a). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience, 300, 141– 154
[34] Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., … Cazaubiel, J. M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105, 755– 764.
[35] Kim, N., Yun, M., On, Y. J., & Choi, H. J. (2018). Mind-altering with the gut: Modulation of the gut-brain axis with probiotics. Journal of Microbiology, 56, 172– 182.
[36] Goehler, LE. et al. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun., 22 (2008), pp. 354-366
[37] Lyte, M. et al. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav., 89 (2006), pp. 350-357
[38] Neufeld, K.A. (A) et al. Effects of intestinal microbiota on anxiety-like behavior. Commun. Integr. Biol., 4 (2011), pp. 492-494
[39] Ong IM, Gonzalez JG, McIlwain SJ, Sawin EA, Schoen AJ, Adluru N, Alexander AL, Yu JJ. Gut microbiome populations are associated with structure-specific changes in white matter architecture. Transl Psychiatry 2018;8:6.
[40] Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Adv Nutr. 2019 Jan 1;10(suppl_1):S49-S66.