1 Wadhawan, V. Ferroelasticity. Bulletin of Materials Science 6, 733-753 (1984).
2 Salje, E. K. Ferroelastic materials. Annual Review of Materials Research 42, 265-283 (2012).
3 Gao, P. et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nature Communications 4, 1-9 (2013).
4 Carpenter, M. A., Salje, E. K. & Graeme-Barber, A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 621-691 (1998).
5 Baek, S. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nature materials 9, 309-314 (2010).
6 Salje, E. K. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940-950 (2010).
7 Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nature materials 2, 43-47 (2003).
8 Nataf, G. et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nature Reviews Physics, 1-15 (2020).
9 Hermes, I. M. et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. The Journal of Physical Chemistry C 120, 5724-5731 (2016).
10 Rothmann, M. U. et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nature communications 8, 1-8 (2017).
11 Röhm, H., Leonhard, T., Hoffmann, M. J. & Colsmann, A. Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy & Environmental Science 10, 950-955 (2017).
12 Wei, J. et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. The journal of physical chemistry letters 5, 3937-3945 (2014).
13 Dong, R. et al. High‐gain and low‐driving‐voltage photodetectors based on organolead triiodide perovskites. Advanced materials 27, 1912-1918 (2015).
14 Gómez, A., Wang, Q., Goñi, A. R., Campoy-Quiles, M. & Abate, A. Ferroelectricity-free lead halide perovskites. Energy & Environmental Science 12, 2537-2547 (2019).
15 Sharada, G. et al. Is CH3NH3PbI3 Polar. J. Phys. Chem. Lett 7, 2412-2419 (2016).
16 Strelcov, E. et al. CH3NH3PbI3 perovskites: Ferroelasticity revealed. Science advances 3, e1602165 (2017).
17 Xiao, X. et al. Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination. Nature Communications 11, 1-7 (2020).
18 Arlt, G. Twinning in ferroelectric and ferroelastic ceramics: stress relief. Journal of materials Science 25, 2655-2666 (1990).
19 Peng, W. et al. Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano letters 17, 4759-4767 (2017).
20 Li, H. et al. Sensitive and Stable 2D Perovskite Single‐Crystal X‐ray Detectors Enabled by a Supramolecular Anchor. Advanced Materials, 2003790 (2020).
21 Wang, Q. et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nature communications 10, 1-8 (2019).
22 Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics 10, 699-704 (2016).
23 Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nature nanotechnology 11, 872-877 (2016).
24 Grancini, G. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature communications 8, 1-8 (2017).
25 Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy 2, 17135 (2017).
26 Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312-316 (2016).
27 Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society 138, 2649-2655 (2016).
28 Xiao, X. et al. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Letters 3, 684-688 (2018).
29 Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society 137, 7843-7850 (2015).
30 Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials 28, 2852-2867 (2016).
31 Deng, S. et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nature communications 11, 1-8 (2020).
32 Chen, Z. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature communications 8, 1-7 (2017).
33 Song, Y., Chen, X., Dabade, V., Shield, T. W. & James, R. D. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85-88 (2013).
34 Van der Weide, J. & Nemanich, R. Argon and hydrogen plasma interactions on diamond (111) surfaces: Electronic states and structure. Applied physics letters 62, 1878-1880 (1993).
35 Motta, C. et al. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nature communications 6, 7026 (2015).
36 Whitfield, P. et al. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Scientific reports 6, 1-16 (2016).
37 Lahnsteiner, J., Kresse, G., Heinen, J. & Bokdam, M. Finite-temperature structure of the MAPbI3 perovskite: Comparing density functional approximations and force fields to experiment. Physical Review Materials 2, 073604 (2018).
38 Zhu, H. & Liu, J.-M. Electronic structure of organometal halide perovskite CH3NH3BiI3 and optical absorption extending to infrared region. Scientific reports 6, 1-9 (2016).
39 Qian, X., Kawai, M., Goto, H. & Li, J. Effect of twin boundaries and structural polytypes on electron transport in GaAs. Computational Materials Science 108, 258-263 (2015).