[1]. Béla N,Péter Zs. Fekete. Enterotoxigenic Escherichia coli in veterinary medicine. J Med Microbiol. 2005; 295(6-7): 443-54.
[2]. Sack RB. Human Diarrheal Disease Caused by Enterotoxigenic Escherichia Coli. Annu Rev Microbiol. 1975; 29: 333-53.
[3]. Heinfried S, Andreas S, Ruth W, Alfons B, Hubert B, Martha MG, et al. Effect of Endotoxemia on Intestinal Villus Microcirculation in Rats. J Surg Res, 1996; 61(2): 521-6.
[4]. Gupta M,Kumar A. Comparison of Minimum Inhibitory Concentration (MIC) value of statin drugs: A Systematic Review. Anti-Infective Agents. 2019; 17: 4-19.
[5]. Benhamou RI, Shaul P, Herzog Ido M., Fridman M. Di‐N‐Methylation of Anti‐Gram‐Positive Aminoglycoside‐Derived Membrane Disruptors Improves Antimicrobial Potency and Broadens Spectrum to Gram‐Negative Bacteria. Angew Chem Int Edit. 2015; 54(46): 13617-21.
[6]. Govindappa PK, Gautam V, Tripathi SM, Sahni YP, Raghavendra HLS. Effect of Withania somnifera on gentamicin induced renal lesions in rats. Rev Bras Farmacogn, 2019. doi: 10.1016/j.bjp.2018.12.005.
[7]. Gupta M, Sharma R, Kumar A. Comparative potential of Simvastatin, Rosuvastatin and Fluvastatin against bacterial infection: an in silico and in vitro study. Orient Pharm Exp Med. 2019. doi: 10.1007/s13596-019-00359-z.
[8]. Ritika R, Ruchika S, Anoop K. Repurposing of Existing Statin drugs for treatment of Microbial Infections: How much Promising? Infect Disord Drug Targets. 2019; 19(3): 224-237.
[9]. Yachika K, Ruchika S, Anoop K. Repurposing of existing drugs for the bacterial infections: An In silico and In vitro study. Infect Disord Drug Targets. 2020; 20(2):182-197.
[10]. Li J, Liu D, Wu JF, Zhang D, Cheng BB, Zhang, YN, et al. Ginsenoside Rg1 attenuates ultraviolet B-induced glucocortisides resistance in keratinocytes via Nrf2/HDAC2 signalling. Sci Rep. 2016. doi: 10.1038/srep39336.
[11]. Yao X, Jiang W, Ma CH, Yu DH, Zhu JG, Cheng ZQ, Bao JA. Protective effects of Ginsenoside Rg1 against carbon tetrachloride-induced liver injury in mice through suppression of inflammation. Phytomedicine. 2016; 23(6): 583-8.
[12]. Ma SW, Benzie IFF, Chu TTW, Fok BSP, Tomlinson B, Critchley LAH. Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes Metab. 2008; 10(11): 1125-7.
[13]. Yang X, Wu, XZ. Main Anti-tumor Angiogenesis Agents Isolated From Chinese Herbal Medicines. Mini Rev Med Chem. 2015;15(12): 1011-23.
[14]. Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol. 1992; 36(1): 27-38.
[15]. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res. 2017; 41(4): 435-443.
[16]. Jin C, Wang ZZ, Zhou H, Lou YX, Zhang DS. Ginsenoside Rg1-induced antidepressant effects involve the protection of astrocyte gap junctions within the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2017; 75: 183-191.
[17]. Gao Y, Chu SF, Zhang Z, Chen NH. Hepataprotective effects of ginsenoside Rg1-A review. J Ethnopharmacol. 2017; 206: 178-183.
[18]. Tian W, Chen L, Zhang L, Wang B, Li XB, Fan KR, et al. Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats. Genet Mol Res. 2017; 16(1). doi: 10.4238/gmr16019463.
[19]. Gao Y, Chu SF, Shao QH, Zhang MJ, Xia CY, Wang YY, et al. Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice. Free Radic Res. 2017; 51(1): 1-13.
[20]. Gao Y, Chu SF, Zhang Z,Zuo W, Xia CY, Ai QD, et al. Early Stage Functions of Mitochondrial Autophagy and Oxidative Stress in Acetaminophen-Induced Liver Injury. J Cell Biochem. 2017; 118(10): 3130-3141.
[21]. Gao Y, Chu SF, Xia CY, Zhang Z, Zhang S, Chen NH. Rg1 Attenuates alcoholic hepatic damage through regulating AMP-activated protein kinase and nuclear factor erythroid 2-related factor 2 signal pathways. J Asian Nat Prod Res. 2016;18(8): 765-78.
[22]. Gao Y, Chu SF, Li JW, Li JP, Zhang Z, Xia CY, et al. Anti-inflammatory function of ginsenoside Rg1 on alcoholic hepatitis through glucocorticoid receptor related nuclear factor-kappa B pathway. J Ethnopharmacol. 2015; 173: 231-40.
[23]. Sun XC, Ren XF, Chen L, Gao XQ, Xie JX, Chen WF. Glucocorticoid receptor is involved in the neuroprotective effect of ginsenoside Rg1 against inflammation-induced dopaminergic neuronal degeneration in substantia nigra. J Steroid Biochem Mol Biol. 2016; 155(Pt A): 94-103.
[24]. Zhang LM, Zhu MJ, Li MM, Du Y, Fu FH. Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-γ/NF-κB signal pathway. Oncotarget. 2017; 8(33): 55384-55393.
[25]. Li YJ, Zhang GY, Chen ML, Tong M, Zhao M, Tang F, et al. Rutaecarpine inhibited imiquimod-induced psoriasis-like dermatitis via inhibiting the NF-κB and TLR7 pathways in mice. Biomed Pharmacother. 2019; 109: 1876-1883.
[26]. Wong SY, Hashim OH, Hayashi N. Development of high-performance two-dimensional gel electrophoresis for human hair shaft proteome. PLoS ONE. 2019; 14(3): e0213947.
[27]. Liu CW, Zhang QB. Isobaric Labeling-Based LC-MS/MS Strategy for Comprehensive Profiling of Human Pancreatic Tissue Proteome. Methods Mol Biol. 2018; 1788: 215-224.
[28]. Cao JY, Xu YP,Cai XZ. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. J Proteomics. 2016; 143:265-277.
[29]. Omicsbean online bioinformatics resource. http://www.omicsbean.cn/. Accessed 12 June 2019.
[30]. Lee YJ, Chung E, Lee KY, Lee YH, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol. 1997; 133(2): 135-140.
[31]. Fang HE, Yu LM. Effects of ginsenoside Rg1 on characteristics and functions of adult stem cells. Chinese Pharmacological Bulletin. 2016; 32(03): 319-322.
[32]. Béla N, Péter Zs. Fekete. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol. 2005; 295(6-7): 443-54.
[33]. Kopic S, Geibel JP. Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel). 2010; 2(8): 2132-57.
[34]. Dubreuil JD. The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. Curr Issues Mol Biol. 2012; 14(2): 71-82.
[35]. Caspary WF. Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr. 1992; 55(1 Suppl): 299S-309S.
[36]. Liu Y, Chen F, Odle J, Lin X, Jacobi SK, Zhu H, et al. Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J Nutr. 2012; 142(11): 2017-24.
[37]. Gíslason J,Suhasini Iyer ,Hutchens TW,LONNERDAL B. Lactoferrin receptors in piglet small intestine: Lactoferrin binding properties, ontogeny, and regional distribution in the gastrointestinal tract. J Nutr Biochem. 1993; 4(9): 528-533.
[38]. Trier, Jerry S. Mucosal flora in inflammatory bowel disease: Intraepithelial bacteria or endocrine epithelial cell secretory granules? Gastroenterology. 2002; 123(3): 956.
[39]. He YW, Malek TR. The structure and function of gamma c-dependent cytokines and receptors: regulation of T lymphocyte development and homeostasis. Crit Rev Immunol. 1998; 18(6): 503-24.
[40]. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001; 11(9): 372-377.
[41]. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003; 10(1): 45-65.
[42]. Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb Perspect Biol. 2014; 6(10): a016295.
[43]. Kishimoto T. Factors Affecting B-Cell Growth and Differentiation. Annu Rev Immunol. 1985; 3: 133-57.
[44] Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996; 87(6): 2095-147.
[45]. Gloria LC, David B. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011; 22(4): 189-195.
[46]. Lee, SH, Lillehoj HS, Jang SI, Lillehoj EP, Min W, Bravo DM. Dietary supplementation of young broiler chickens with Capsicum and turmeric oleoresins increases resistance to necrotic enteritis. Br J Nutr. 2013; 110(5): 840-847.
[47]. McKay DM,Baird AW. Cytokine regulation of epithelial permeability and ion transport. Gut. 1999; 44(2): 283-9.
[48]. Xiao Q, Zhang SJ, Yang C, Du RY, Huang WX. Ginsenoside Rg1 Ameliorates Palmitic Acid-Induced Hepatic Steatosis and Inflammation in HepG2 Cells via the AMPK/NF- κ B Pathway. Int J Endocrinol. 2019; 2019. doi: 10.1155/2019/7514802.
[49]. Gao Y, Li JT, Wang J, Li X, Zhang L. Ginsenoside Rg1 prevent and treat inflammatory diseases: A review. Int Immunopharmacol. 2020; 87: 106805.
[50]. Peter H, Jenny F, Tetsuhiko N, Rosalba S, Carolyn AC, Nancy HR. Lymphoid Tissue Homing Chemokines Are Expressed in Chronic Inflammation. Am J Pathol. 2000; 156(4): 1133-8.
[51]. Dinarello CA. Anti-inflammatory Agents: Present and Future. Cell. 2010; 140(6): 935-50.
[52]. Sacks SH., Zhou WD. The role of complement in the early immune response to transplantation. Nat Rev Immunol. 2012; 12(6): 431-42.
[53]. Robert SM, Zhu H, Narcis IP, Glenn P, Florea L. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood. 2010; 116(6): 1002-10.
[54]. Hotchkiss RS, Karl IE. The Pathophysiology and Treatment of Sepsis. N Engl J Med. 2003; 348(2): 138-50.
[55]. Wu Y. Contact pathway of coagulation and inflammation. Thromb J. 2015; 13: 17.
[56]. Shanmugavelayudam SK, Rubenstein, DA, Wei Y. Effects of physiologically relevant dynamic shear stress on platelet complement activation. Platelets. 2011; 22(8): 602-610.
[57]. Sarah H, Li C, Tony W, Berhane G, Wei Y, David AR. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations. Platelets. 2016; 27(7): 694-702.