Many of the currently existing solutions for cloud cost optimisation are aimed at cloud infrastructure providers, and they often deal only with specific types of application services, leaving the providers of cloud applications without the suitable cost optimization solution, especially concerning the wide range of different application types. In this paper, we present an approach that aims to provide an optimisation solution for the providers of applications hosted in the cloud environments, applicable at the early phase of a cloud application lifecycle and for a wide range of application services. The focus of this research is development of the method for identifying optimised service deployment option in available cloud environments based on the model of the service and its context, with the aim of minimising the operational cost of the cloud service, while fulfilling the requirements defined by the service level agreement. A cloud application context metamodel is proposed that includes parameters related to both the application service and the cloud infrastructure relevant for the cost and quality of service. By using the proposed optimisation method, the knowledge is gained about the effects that the cloud application context parameters have on the service cost and quality of service, which is then used to determine the optimised service deployment option. The service models are validated using cloud application services deployed in laboratory conditions, and the optimisation method is validated using the simulations based on proposed cloud application context metamodel. The experimental results based on two cloud application services demonstrate the ability of the proposed approach to provide relevant information about the impact of cloud application context parameters on service cost and quality of service, and use this information in the optimisation aimed at reducing service operational cost while preserving the acceptable service quality level. The results indicate the applicability and relevance of the proposed approach for cloud applications in the early service lifecycle phase since application providers can gain useful insights regarding service deployment decision without acquiring extensive datasets for the analysis.