1. Friedman, E., Verderame, M., Winawer, S. & Pollack, R. Actin cytoskeletal organization loss in the benign-to-malignant tumor transition in cultured human colonic epithelial cells. Cancer Research 44, 3040–3050 (1984).
2. Cross, S. E., Jin, Y.-S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature nanotechnology 2, 780–783 (2007).
3. Lekka, M. et al. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal 28, 312–316 (1999).
4. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophysical journal 88, 3689–3698 (2005).
5. Tse, H. T. et al. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci Transl Med 5 (212): 212ra163 (2013).
6. Karantza, V. Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30, 127–138 (2011).
7. Yang, J. et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 21, 341–352; 10.1038/s41580-020-0237-9 (2020).
8. Seltmann, K., Fritsch, A. W., Käs, J. A. & Magin, T. M. Keratins significantly contribute to cell stiffness and impact invasive behavior. Proceedings of the National Academy of Sciences 110, 18507–18512 (2013).
9. Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Current opinion in cell biology 23, 55–64; 10.1016/j.ceb.2010.10.015 (2011).
10. Xia, Y., Pfeifer, C. R. & Discher, D. E. Nuclear mechanics during and after constricted migration. Acta Mech. Sin. 35, 299–308; 10.1007/s10409-018-00836-9 (2019).
11. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer cell 8, 241–254 (2005).
12. Runge, J. et al. Evaluation of single-cell biomechanics as potential marker for oral squamous cell carcinomas: a pilot study. Oral Diseases 20, e120-7; 10.1111/odi.12171 (2014).
13. Nel, I., Morawetz, E. W., Tschodu, D., Käs, J. A. & Aktas, B. The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients. Cancers 13, 1119; 10.3390/cancers13051119 (2021).
14. Oktay, M. H. et al. Correlated immunohistochemical and cytological assays for the prediction of hematogenous dissemination of breast cancer. Journal of Histochemistry & Cytochemistry 60, 168–173 (2012).
15. Plodinec, M. et al. The nanomechanical signature of breast cancer. Nature nanotechnology 7, 757–765 (2012).
16. Grosser, S. et al. Cell and Nucleus Shape as an Indicator of Tissue Fluidity in Carcinoma. Phys. Rev. X 11, 11033; 10.1103/PhysRevX.11.011033 (2021).
17. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K. Solid stress inhibits the growth of multicellular tumor spheroids. Nature biotechnology 15, 778–783 (1997).
18. Jonietz, E. Mechanics: The forces of cancer. Nature 491, S56-7; 10.1038/491S56a (2012).
19. Godard, B. G. & Heisenberg, C.-P. Cell division and tissue mechanics. Current opinion in cell biology 60, 114–120; 10.1016/j.ceb.2019.05.007 (2019).
20. Ranft, J. et al. Fluidization of tissues by cell division and apoptosis. Proceedings of the National Academy of Sciences of the United States of America 107, 20863–20868; 10.1073/pnas.1011086107 (2010).
21. Guevorkian, K., Colbert, M.-J., Durth, M., Dufour, S. & Brochard-Wyart, F. Aspiration of biological viscoelastic drops. Physical review letters 104, 218101 (2010).
22. Pawlizak, S. et al. Testing the differential adhesion hypothesis across the epithelial− mesenchymal transition. New Journal of Physics 17, 83049 (2015).
23. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proceedings of the National Academy of Sciences 108, 4714–4719 (2011).
24. Nnetu, K. D., Knorr, M., Käs, J. & Zink, M. The impact of jamming on boundaries of collectively moving weak-interacting cells. New Journal of Physics 14, 115012 (2012).
25. Collins, T. A., Yeoman, B. M. & Katira, P. To lead or to herd: optimal strategies for 3D collective migration of cell clusters. Biomechanics and modeling in mechanobiology 19, 1551–1564; 10.1007/s10237-020-01290-y (2020).
26. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).
27. Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO reports 15, 1243–1253 (2014).
28. Braun, J. et al. A compact 0.5 T MR elastography device and its application for studying viscoelasticity changes in biological tissues during progressive formalin fixation. Magnetic resonance in medicine 79, 470–478; 10.1002/mrm.26659 (2018).
29. Sauer, F. et al. Collagen networks determine viscoelastic properties of connective tissues yet do not hinder diffusion of the aqueous solvent. Soft matter 15, 3055–3064; 10.1039/c8sm02264j (2019).
30. Sauer, F. et al. Whole tissue and single cell mechanics are correlated in human brain tumors. Soft matter; 10.1039/d1sm01291f (2021).
31. Bonfanti, A., Kaplan, J. L., Charras, G. & Kabla, A. Fractional viscoelastic models for power-law materials. Soft matter 16, 6002–6020; 10.1039/D0SM00354A (2020).
32. Wu, P.-H. et al. A comparison of methods to assess cell mechanical properties. Nature methods 15, 491–498; 10.1038/s41592-018-0015-1 (2018).
33. Jiang, X. et al. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix. European radiology 24, 3025–3033; 10.1007/s00330-014-3305-8 (2014).
34. Streitberger, K.-J. et al. How tissue fluidity influences brain tumor progression. Proceedings of the National Academy of Sciences of the United States of America 117, 128–134; 10.1073/pnas.1913511116 (2020).
35. Hecht, F. M. et al. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. Soft matter 11, 4584–4591; 10.1039/c4sm02718c (2015).
36. Hiratsuka, S. et al. The number distribution of complex shear modulus of single cells measured by atomic force microscopy. Ultramicroscopy 109, 937–941; 10.1016/j.ultramic.2009.03.008 (2009).
37. DuFort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12, 308–319; 10.1038/nrm3112 (2011).
38. Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophysical journal 81, 767–784 (2001).
39. Raab, M. et al. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. Journal of Cell Biology 199, 669–683 (2012).
40. Teixeira, M. R. & Heim, S. Cytogenetic analysis of tumor clonality. In Advances in cancer research (Elsevier2011), Vol. 112, pp. 127–149.
41. Li, X., Das, A. & Bi, D. Mechanical Heterogeneity in Tissues Promotes Rigidity and Controls Cellular Invasion. Physical review letters 123, 58101; 10.1103/PhysRevLett.123.058101 (2019).
42. Atia, L. et al. Geometric constraints during epithelial jamming. Nature Phys 14, 613–620; 10.1038/s41567-018-0089-9 (2018).
43. Mitchel, J. A. et al. In primary airway epithelial cells, the unjamming transition is distinct from the epithelial-to-mesenchymal transition. Nature communications 11, 5053; 10.1038/s41467-020-18841-7 (2020).
44. Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nature materials 14, 1040–1048 (2015).
45. Amack, J. D. & Manning, M. L. Knowing the boundaries: extending the differential adhesion hypothesis in embryonic cell sorting. Science 338, 212–215; 10.1126/science.1223953 (2012).
46. Sahu, P. et al. Small-scale demixing in confluent biological tissues. Soft matter 16, 3325–3337; 10.1039/c9sm01084j (2020).
47. Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19, 224–237; 10.1038/ncb3478 (2017).
48. Le Yan & Bi, D. Multicellular Rosettes Drive Fluid-solid Transition in Epithelial Tissues. Phys. Rev. X 9; 10.1103/physrevx.9.011029 (2019).
49. Das, A., Sastry, S. & Bi, D. Controlled neighbor exchanges drive glassy behavior, intermittency, and cell streaming in epithelial tissues. Phys. Rev. X (2021).
50. Lee, M.-H. et al. Mismatch in Mechanical and Adhesive Properties Induces Pulsating Cancer Cell Migration in Epithelial Monolayer. Biophysical journal 102, 2731–2741; 10.1016/j.bpj.2012.05.005 (2012).
51. Mierke, C. T. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Reports on progress in physics. Physical Society (Great Britain) 82, 64602; 10.1088/1361-6633/ab1628 (2019).
52. Gensbittel, V. et al. Mechanical Adaptability of Tumor Cells in Metastasis. Developmental cell 56, 164–179; 10.1016/j.devcel.2020.10.011 (2021).
53. Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, eaaz0868; 10.1126/science.aaz0868 (2020).
54. Schötz, E.-M. et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP journal 2, 42–56 (2008).
55. Greeley, C. F. & Frost, A. R. Cytologic features of ductal and lobular carcinoma in fine needle aspirates of the breast. Acta Cytol 41, 333–340; 10.1159/000332521 (1997).
56. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. The American Journal of Pathology 178, 1221–1232; 10.1016/j.ajpath.2010.11.076 (2011).
57. Ilina, O. et al. Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nature cell biology 22, 1103–1115; 10.1038/s41556-020-0552-6 (2020).
58. Sharma, V. P. et al. SUN-MKL1 Crosstalk Regulates Nuclear Deformation and Fast Motility of Breast Carcinoma Cells in Fibrillar ECM Microenvironment. Cells 10; 10.3390/cells10061549 (2021).
59. Basan, M., Risler, T., Joanny, J.-F., Sastre-Garau, X. & Prost, J. Homeostatic competition drives tumor growth and metastasis nucleation. HFSP journal 3, 265–272; 10.2976/1.3086732 (2009).
60. Liu, X. et al. Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models. Cancer discovery 9, 96–113; 10.1158/2159-8290.CD-18-0065 (2019).