1 Meek, K. M. & Knupp, C. Corneal structure and transparency. Prog. Retin. Eye Res.49, 1-16, doi:10.1016/j.preteyeres.2015.07.001 (2015).
2 Chen, S., Mienaltowski, M. J. & Birk, D. E. Regulation of corneal stroma extracellular matrix assembly. Exp. Eye Re.s133, 69-80, doi:10.1016/j.exer.2014.08.001 (2015).
3 Svensson, L. et al. Fibromodulin-null Mice Have Abnormal Collagen Fibrils, Tissue Organization, and Altered Lumican Deposition in Tendon. J. Biol. Chem.274, 9636-9647, doi:10.1074/jbc.274.14.9636 (1999).
4 Dunlevy, J. R., Neame, P. J., Vergnes, J.-P. & Hassell, J. R. Identification of theN-Linked Oligosaccharide Sites in Chick Corneal Lumican and Keratocan That Receive Keratan Sulfate. J. Biol. Chem.273, 9615-9621, doi:10.1074/jbc.273.16.9615 (1998).
5 Chen, S. & Birk, D. E. Focus on molecules: decorin. Exp. Eye Res.92, 444-445, doi:10.1016/j.exer.2010.05.008 (2011).
6 Guo, C. & Kaufman, L. J. Flow and magnetic field induced collagen alignment. Biomaterials28, 1105-1114, doi:10.1016/j.biomaterials.2006.10.010 (2007).
7 Fini, M. E. & Stramer, B. M. How the cornea heals: cornea-specific repair mechanisms affecting surgical outcomes. Cornea24, S2-s11, doi:10.1097/01.ico.0000178743.06340.2c (2005).
8 West-Mays, J. A. & Dwivedi, D. J. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J. Biochem. Cell. Biol.38, 1625-1631, doi:10.1016/j.biocel.2006.03.010 (2006).
9 Chaurasia, S. S., Kaur, H., de Medeiros, F. W., Smith, S. D. & Wilson, S. E. Reprint of "Dynamics of the expression of intermediate filaments vimentin and desmin during myofibroblast differentiation after corneal injury". Exp. Eye Res.89, 590-596, doi:10.1016/s0014-4835(09)00247-4 (2009).
10 Jester, J. V., Petroll, W. M., Barry, P. A. & Cavanagh, H. D. Expression of alpha-smooth muscle (alpha-SM) actin during corneal stromal wound healing. Invest. Ophthalmol. Vis. Sci.36, 809-819 (1995).
11 Berryhill, B. L. et al. Partial restoration of the keratocyte phenotype to bovine keratocytes made fibroblastic by serum. Invest. Ophthalmol. Vis. Sci. 43, 3416-3421 (2002).
12 Kumar, P., Pandit, A. & Zeugolis, D. I. Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissue-Like Assemblies. Adv. Mater.28, 5381-5399, doi:10.1002/adma.201503986 (2016).
13 Ghezzi, C. E., Rnjak-Kovacina, J. & Kaplan, D. L. Corneal tissue engineering: recent advances and future perspectives. Tissue. Eng. Part. B Rev.21, 278-287, doi:10.1089/ten.TEB.2014.0397 (2015).
14 Chen, J., Zhang, W., Kelk, P., Backman, L. J. & Danielson, P. Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model. Stem. Cell. Res. Ther.8, 260, doi:10.1186/s13287-017-0715-y (2017).
15 Gil, E. S. et al. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials31, 8953-8963, doi:10.1016/j.biomaterials.2010.08.017 (2010).
16 Isaacson, A., Swioklo, S. & Connon, C. J. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res.173, 188-193, doi:10.1016/j.exer.2018.05.010 (2018).
17 Sorkio, A. et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials171, 57-71, doi:10.1016/j.biomaterials.2018.04.034 (2018).
18 McIntosh Ambrose, W. et al. Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J. Biomed. Mater. Res. B Appl. Biomater.90, 818-831, doi:10.1002/jbm.b.31351 (2009).
19 Cui, Z. et al. Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma induced by a mechanical collagen microenvironment and transplantation in a rabbit model. Acta. Biomater.75, 183-199, doi:10.1016/j.actbio.2018.06.005 (2018).
20 Wang, J. H., Jia, F., Gilbert, T. W. & Woo, S. L. Cell orientation determines the alignment of cell-produced collagenous matrix. J. Biomech.36, 97-102, doi:10.1016/s0021-9290(02)00233-6 (2003).
21 Muthusubramaniam, L. et al. Collagen fibril diameter and alignment promote the quiescent keratocyte phenotype. J. Biomed. Mater. Res. A100, 613-621, doi:10.1002/jbm.a.33284 (2012).
22 Sloniecka, M. et al. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ. PLoS One10, e0134157, doi:10.1371/journal.pone.0134157 (2015).
23 Sloniecka, M., Le Roux, S., Zhou, Q. & Danielson, P. Substance P Enhances Keratocyte Migration and Neutrophil Recruitment through Interleukin-8. Mol. Pharmacol.89, 215-225, doi:10.1124/mol.115.101014 (2016).
24 Karamichos, D. et al. TGF-beta3 stimulates stromal matrix assembly by human corneal keratocyte-like cells. Invest. Ophthalmol. Vis. Sci.54, 6612-6619, doi:10.1167/iovs.13-12861 (2013).
25 Jester, J. V. et al. Myofibroblast Differentiation of Normal Human Keratocytes and hTERT, Extended-Life Human Corneal Fibroblasts. Investig. Ophthalmol. Vis. Sci44, 1850-1858, doi:10.1167/iovs.02-0973 (2003).
26 Zhang, W., Chen, J., Backman, L. J., Malm, A. D. & Danielson, P. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model. Adv. Healthc. Mater.6, 1601238, doi:10.1002/adhm.201601238 (2017).
27 Jester, J. V. & Ho-Chang, J. Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Exp. Eye Res.77, 581-592, doi:10.1016/s0014-4835(03)00188-x (2003).
28 Musselmann, K., Kane, B. P., Alexandrou, B. & Hassell, J. R. IGF-II is present in bovine corneal stroma and activates keratocytes to proliferate in vitro. Exp. Eye Res.86, 506-511, doi:10.1016/j.exer.2007.12.004 (2008).
29 Sloniecka, M. & Danielson, P. Acetylcholine decreases formation of myofibroblasts and excessive extracellular matrix production in an in vitro human corneal fibrosis model. J. Cell. Mol. Med., doi:10.1111/jcmm.15168 (2020).
30 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods.9, 676-682, doi:doi:10.1038/nmeth.2019 (2012).
31 Myrna, K. E., Pot, S. A. & Murphy, C. J. Meet the corneal myofibroblast: the role of myofibroblast transformation in corneal wound healing and pathology. Vet. Ophthalmol.12 Suppl 1, 25-27, doi:10.1111/j.1463-5224.2009.00742.x (2009).
32 Tonsomboon, K. & Oyen, M. L. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J. Mech. Behav. Biomed. Mater.21, 185-194, doi:10.1016/j.jmbbm.2013.03.001 (2013).
33 Wang, H. Y., Wei, R. H. & Zhao, S. Z. Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds. Int. J. Ophthalmol.6, 873-878, doi:10.3980/j.issn.2222-3959.2013.06.23 (2013).
34 Zimmermann, D. R., Fischer, R. W., Winterhalter, K. H., Witmer, R. & Vaughan, L. Comparative studies of collagens in normal and keratoconus corneas. Exp. Eye Res.46, 431-442, doi:10.1016/s0014-4835(88)80031-9 (1988).
35 Torbet, J. et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials28, 4268-4276, doi:10.1016/j.biomaterials.2007.05.024 (2007).
36 Doughty, M. J., Seabert, W., Bergmanson, J. P. G. & Blocker, Y. A descriptive and quantitative study of the keratocytes of the corneal stroma of albino rabbits using transmission electron microscopy. Tissue. Cell.33, 408-422, doi:DOI 10.1054/tice.2001.0195 (2001).
37 Boettner, E. A. & Wolter, J. R. Transmission of the Ocular Media. Investig. Ophthalmol. Vis. Sci.1, 776-783 (1962).
38 Meek, K. M. & Knupp, C. Corneal structure and transparency. Prog. Retin. Eye Res.49, 1-16, doi:10.1016/j.preteyeres.2015.07.001 (2015).
39 Freegard, T. J. The physical basis of transparency of the normal cornea. Eye (Lond)11 ( Pt 4), 465-471, doi:10.1038/eye.1997.127 (1997).
40 Meek, K. M. Corneal collagen-its role in maintaining corneal shape and transparency. Biophys. Rev.1, 83-93 (2009).
41 Martinez, E., Engel, E., Planell, J. A. & Samitier, J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat.191, 126-135, doi:10.1016/j.aanat.2008.05.006 (2009).
42 Clark, P., Connolly, P., Curtis, A. S., Dow, J. A. & Wilkinson, C. D. Cell guidance by ultrafine topography in vitro. J. Cell. Sci.99 ( Pt 1), 73-77 (1991).
43 Sales, A., Holle, A. W. & Kemkemer, R. Initial contact guidance during cell spreading is contractility-independent. Soft. Matter.13, 5158-5167, doi:10.1039/c6sm02685k (2017).
44 Guo, Q. et al. Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair. Biomaterials34, 9365-9372, doi:10.1016/j.biomaterials.2013.08.061 (2013).
45 Lakshman, N., Kim, A. & Petroll, W. M. Characterization of corneal keratocyte morphology and mechanical activity within 3-D collagen matrices. Exp. Eye. Res.90, 350-359 (2010).
46 Jester, J. V. et al. Corneal keratocytes: in situ and in vitro organization of cytoskeletal contractile proteins. Investig. Ophthalmol. Vis. Sci.35, 730-743 (1994).
47 Bhattacharjee, P., Cavanagh, B. L. & Ahearne, M. Effect of substrate topography on the regulation of human corneal stromal cells. Colloids Surf. B.190, 110971, doi:https://doi.org/10.1016/j.colsurfb.2020.110971 (2020).