1. Seetharam K, Shresthra S, Mills JD, Sengupta PP (2019) Artificial intelligence in nuclear cardiology: adding value to prognostication. Current Cardiovascular Imaging Reports 12:1-6
2. Gomez J, Doukky R, Germano G, Slomka P (2018) New trends in quantitative nuclear cardiology methods. Current cardiovascular imaging reports 11:1-10
3. Eid M, Spearman JV, van Assen M, De Santis D, Sahbaee P, Landreth SP, et al. Machine learning and artificial intelligence in cardiovascular imaging. CT of the Heart: Springer; 2019. p. 893-907.
4. Spier N, Nekolla S, Rupprecht C, Mustafa M, Navab N, Baust M (2019) Classification of Polar Maps from Cardiac Perfusion Imaging with Graph-Convolutional Neural Networks. Scientific Reports 9:7569.https://doi.org/10.1038/s41598-019-43951-8
5. Currie G (2019) Intelligent imaging: anatomy of machine learning and deep learning. Journal of nuclear medicine technology 47:273-81
6. Betancur J, Hu LH, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. (2019) Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 60:664-70
7. Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis. Ieee Access 6:9375-89
8. Visvikis D, Le Rest CC, Jaouen V, Hatt M (2019) Artificial intelligence, machine (deep) learning and radio (geno) mics: definitions and nuclear medicine imaging applications. European journal of nuclear medicine and molecular imaging 46:2630-7
9. Apostolopoulos ID, Apostolopoulos DI, Spyridonidis TI, Papathanasiou ND, Panayiotakis GS (2021) Multi-input deep learning approach for Cardiovascular Disease diagnosis using Myocardial Perfusion Imaging and clinical data. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 84:168-77
10. Apostolopoulos ID, Papathanasiou ND, Spyridonidis T, Apostolopoulos DJ (2020) Automatic characterization of myocardial perfusion imaging polar maps employing deep learning and data augmentation. Hellenic journal of nuclear medicine 23:125-32
11. Berkaya SK, Sivrikoz IA, Gunal S (2020) Classification models for SPECT myocardial perfusion imaging. Computers in Biology and Medicine 123:103893
12. Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. (2018) Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC: Cardiovascular Imaging 11:1654-63
13. Chen J-J, Su T-Y, Chen W-S, Chang Y-H, Lu HH-S (2021) Convolutional neural network in the evaluation of myocardial ischemia from czt spect myocardial perfusion imaging: Comparison to automated quantification. Applied Sciences 11:514
14. Liu H, Wu J, Miller EJ, Liu C, Liu Y-H (2021) Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning. European Journal of Nuclear Medicine and Molecular Imaging 1-8
15. Otaki Y, Singh A, Kavanagh P, Miller RJH, Parekh T, Tamarappoo BK, et al. (2021) Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC: Cardiovascular Imaging.https://www.sciencedirect.com/science/article/pii/S1936878X21004381.https://www.sciencedirect.com/science/article/pii/S1936878X21004381
16. Ross T-Y, Dollár G, editors. Focal loss for dense object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017.
17. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837-45
18. Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. (2018) Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning. JACC: Cardiovascular Imaging 11:1000-9.https://www.jacc.org/doi/abs/10.1016/j.jcmg.2017.07.024
19. Nakajima K, Kudo T, Nakata T, Kiso K, Kasai T, Taniguchi Y, et al. (2017) Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. European journal of nuclear medicine and molecular imaging 44:2280-9
20. Rahmani R, Niazi P, Naseri M, Neishabouri M, Farzanefar S, Eftekhari M, et al. (2019) Improved diagnostic accuracy for myocardial perfusion imaging using artificial neural networks on different input variables including clinical and quantification data. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition) 38:275-9
21. Yoneyama H, Nakajima K, Taki J, Wakabayashi H, Matsuo S, Konishi T, et al. (2019) Ability of artificial intelligence to diagnose coronary artery stenosis using hybrid images of coronary computed tomography angiography and myocardial perfusion SPECT. European Journal of Hybrid Imaging 3:1-14
22. Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. (2018) Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: A Multicenter Study. JACC Cardiovascular imaging 11:1654-63