[1] HNO-Ärzte im Netz (2020) Herausgegeben vom Deutschen Berufsverband der Hals-Nasen-Ohrenärzte e.V.) Tipps zur richtigen Nasenpflege [Tipps for adequate nasal care]. https://www.hno-aerzte-im-netz.de/unsere-sinne/hno-hygiene/tipps-zur-richtigen-nasenpflege.html. Accessed 19 June 2020
[2] Lungenartze im Netz (Lung doctors in the Net) (2020) Einfaches Inhalieren kann Tröpfcheninfektion effektiv eindämmern. [Simple inhalation can limit efficiently droplet infection] https://www.lungenaerzte-im-netz.de/news-archiv/meldung/article/einfaches-inhalieren-kann-troepfcheninfektion-effektiv-eindaemmern/. Accessed 19 June 2020
[3] Praxisvita (das Portal für Gesundheit & Medizin) (2020) Inhalieren bei Corona: Wie wirksam ist das Hausmittel? [Inhalation during Corona; How effective is this home remedy?] https://www.praxisvita.de/coronavirus-dieses-hausmittel-hilft-bei-leichten-symptomen-18411.html. Accessed 19 June 2020
[4] Leichter Atmen bei Lungen- und bronchialerkrankungen (2020) Corona: Pflege der Atemwege vermindert Infektionsrisiko [Corona: Care of the airways reduces the risk of infection]. [24.03.2020] https://www.leichter-atmen.de/copd-news/atemwegspflege. Accessed 19 June 2020
[5] PARI-Blog (2020) Treatment and nebuliser therapy for COVID-19 in hospital. Interview with the Prof. Dr Kamin, Medical Director of the Hamm Lutheran Hospital. https://www.pari.com/int/blog/treatment-and-nebuliser-therapy-for-covid-19-in-hospital-interview-with-the-prof-dr-kamin-medical-director-of-the-hamm-lutheran-hospital/. Accessed in English 27 July 2020. - Firstly accessed in German: Accessed 19 June 2020
[6] Betreut.de (2020) Coronavirus: Was Senioren & ihre Betreuer wissen müssen. [Coronavirus: What seniors and care givers need to know] www.betreut.be. Accessed 14 July 2020
[7] ETH Zurich (2020) Mit Atemwegspflege das Infektionsrisiko senken. [With airway care decrease the risk of infection.] https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2020/03/zukunftsblog-viola-vogel-mit-atemwegspflege-das-infektionsrisiko-senken.html. Accessed 14 July 2020
[8] Bronchiectasis Toolbox (2020) Hydration and humidification https://bronchiectasis.com.au/physiotherapy/principles-of-airway-clearance/hydration-and-humidification. Accessed 13 July 2020
[9] Sciensano (2020) Consensus over het rationeel en correct gebruik van mondmaskers tijdens de COVID-19-pandemie [Consensus on the rational and correct use of mouth masks during the COVID-19 pandemic]. https://covid-19.sciensano.be/sites/default/files/Covid19/consensus%20on%20the%20use%20of%20masks_RMG_NL.pdf. Accessed 13 July 2020
[10] Sciensano (2020) Procedure voor huisartsen in geval van een mogelijk geval van COVID-19. Versie 08 juli 2020. [Procedure for doctors in the event of a possible case of COVID-19]. https://covid-19.sciensano.be/sites/default/files/Covid19/COVID-19_procedure_GP_NL.pdf . Accessed 13 July 2020
[11] APB (2020) Aerosoltoestellen [Aerosol devices]. Information Update 20 March 2020. https://www.apb.be/APB%20Documents/NL/All%20partners/CORONAVIRUS_AEROSOL_VERHUUR_20_03_20.pdf. Accessed 19 June 2020
[12] World Health Organization (2020) Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Scientific brief, 29 March 2020. https://www.who.int/publications-detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations. Accessed June 19, 2020.
[13] Pfeifer M, Ewig S, Voshaar T, Randerath WJ , Bauer T , Geiseler J. et al (2020) Position paper for the state-of-the-art application of respiratory support in patients with COVID-19. Respiration 99:521–541. https://doi.org/10.1159/000509104
[14] Kimura KS, Freeman MH, Wessinger BC, Gupta V, Sheng Q, Huang LC, et al (2020) Interim analysis of an open-label randomized controlled trial evaluating nasal irrigations in non-hospitalized patients with COVID-19. Int Forum Allergy Rhinol Sep 11 [Epub ahead of print]. https://doi.org/10.1002/alr.22703
[15] ClinicalTrials.gov Identifier: NCT04347538. Impact of nasal saline irrigations on viral load in patients with COVID-19. https://clinicaltrials.gov/ct2/show/record/NCT04347538?term=saline&cond=covid-19&draw=2&rank=1
[16] Santos FKG, Barros Neto EL, Moura TMCPA, Castro Dantas TN, Dantas Neto AA (2009) Molecular behavior of ionic and nonionic surfactants in saline medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects 333:156-162. https://doi.org/10.1016/j.colsurfa.2008.09.040
[17] Staszak K, WieczorekD, Michocka K (2015) Effect of sodium chloride on the surface and wetting properties of aqueous solutions of cocamidopropyl betaine. J Surfact Deterg 18:321–328. doi.org/10.1007/s11743-014-1644-8
[18] Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Di Child 97(5_Part_I):517–523. https://doi.org/10.1001/archpedi.1959.02070010519001
[19] Ghadiali SN, Gaver DP (2008) Biomechanics of liquid-epithelium interactions in pulmonary airways. Respir Physiol Neurobiol 163(1-3):232-243. https://doi.org/10.1016/j.resp.2008.04.008
[20] Huang J, Hume AJ, Abo KM, Werder RB, Villacorta-Martin C, Alysandratos KD, (2020)SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. bioRxiv [Preprint]. Jun 30:2020.06.30. 175695. https://doi.org/10.1101/2020.06.30.175695
[21] Takano H (2020) Pulmonary surfactant itself must be a strong defender against SARS-CoV-2. Medical Hypotheses 144:110020. doi.org/10.1016/j.mehy.2020.110020.
[22] van Doremalen N, Morris DH, Holbrook MG, Holbrook MG, Gamble A, Williamson BN (2020) ()Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382:1564-1567. https://doi.org/10.1056/NEJMc2004973
[23] Scheuch G (2020) Breathing is enough: for the spread of influenza virus and SARS-CoV-2 by breathing only. J Aerosol Med Pulm Drug Delivery 33:230-234. doi.org/10.1089/jamp.2020.1616
[24] Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348:1986e94. https://doi.org/10.1056/NEJMoa030685
[25] Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J (2012) Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLOS ONE 7:e35797. https://doi.org/10.1371/journal.pone.0035797
[26] Harding H, Broom A, Broom J (2020) Aerosol-generating procedures and infective risk to healthcare workers from SARS-CoV-2: the limits of the evidence. J Hospital Infection 105:717-725. https://doi.org/https://doi.org/10.1016/j.jhin.2020.05.037
[27] Simonds A, Hanak A, Chatwin M, Morrell M, Hall A, Parker K (2010) Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess 14:131-172. https://doi.org/10.3310/hta14460-02
[28] Jespers V, Roberfroid D (2020). COVID-19 – KCE Contributions. Aerosol-generating procedures. https://kce.fgov.be/sites/default/files/atoms/files/2020-51_COVID_Aerosol%20KCE_FINAL_19052020_3.pdf
[29] Raboud J, Shigayeva A, McGeer A, Bontovics E, Chapman M, Gravel D (2010) Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada. PLOS ONE 5(5):e10717. https://doi.org/10.1371/journal.pone.0010717
[30] Loeb M, McGeer A, Henry B, Ofner M, Rose D, Hlywka T (2004) SARS among critical care nurses, Toronto. Emerg Infect Dis 10(2):251–255. https://doi.org/10.3201/eid1002.030838
[31] Edwards DA, Man JC, Brand P, Katstra JP, Sommerer K, Stone HA (2004) Inhaling to mitigate exhaled bioaerosols. Proc Natl Acad Sci USA 101(50):17383–17388. https://doi.org/10.1073/pnas.0408159101
[32] Fiegel J, Clarke R, Edwards DA (2006) Airborne infectious disease and the suppression of pulmonary bioaerosols. Drug Discov Today 11(1-2):51-7. https://doi.org/10.1016/S1359-6446(05)03687-1
[33] Machado RRG, Glaser T, Araujo DB, Petiz LL, Oliveira DBL, Durigon GS (2020) Hypertonic saline solution inhibits SARS-CoV-2 in vitro assay. BiorXiv https://doi.org/10.1101/2020.08.04.235549
[34] Delgado-Enciso I, Paz-Garcia J, Barajas-Saucedo CE, Mokay-Ramírez KA, Meza-Robles C, Lopez-Flores R (2020) Patient-reported health outcomes after treatment of COVID-19 with nebulized and/or intravenous neutral electrolyzed saline combined with usual medical care versus usual medical care alone: a randomized, open-label, controlled trial. Res Sq [Preprint] 10:rs.3.rs-68403. https://doi.org/10.21203/rs.3.rs-68403/v1.
[35] Hendley JO, Gwaltney JM. Viral titers in nasal lining fluid compared to viral titers in nasal washes during experimental rhinovirus infection. J Clin Virol 2004 30(4):326-328. https://doi.org/10.1016/j.jcv.2004.02.011
[36] Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A (2019). A pilot, open labelled, randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common cold. Sci Rep 9:1015. https://doi.org/10.1038/s41598-018-37703
[37] Edwards D, Hickey A, Batycky R, Griel L, Lipp M, et al. (2020). A new natural defense against airborne pathogens. QRB Discovery 1:e5. https://doi.org/ 10.1017/qrd.2020.9.
[38] Watanabe W, Thomas M, Clarke R, Klibanov AM, Langer R, et al. (2007) Why inhaling salt water changes what we exhale. J Colloid Interface Sci 307:71–8. https://doi.org/ 10.1016/j.jcis.2006.11.017
[39] Patel A, Longmore N, Mohanan A, Ghosh S (2019) Salt and pH-induced attractive interactions on the rheology of food protein-stabilized nanoemulsions. CS Omega 4 (7):11791–11800. https://doi.org/10.1021/acsomega.8b03360
[40] Vejerano EP, Marr LC (2018) Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface 15: 20170939. doi.org/10.1098/rsif.2017.0939
[41] Yang W, Elankumaran S, Marr LC (2012) Relationship between humidity and Influenza A viability in droplets and implications for influenza’s seasonality. PLoS ONE 7(10): e46789. https://doi.org/10.1371/journal.pone.0046789
[42] Bustamante-Marin XM, Ostrowski LE (2017) Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol 9(4):a028241. https://doi.org/10.1101/cshperspect.a028241
[43] Rivera JA(1962) Cilia, ciliated epithelium, and ciliary activity. International Series of Monographs and Applied Biology. 1st edn. Pergamon Press ltd, Oxfor-London-NewYork-Paris pp.50-58. ISBN 978008009623
[44] Paul P, Johnson P, Ramaswamy P, Ramadoss S, Geetha B, & Subhashini AS (2013) The effect of ageing on nasal mucociliary clearance in women: a pilot study. Pulmonol Article ID 598589:5 pages. https://doi.org/10.1155/2013/598589
[45] Pinto JM, Jeswani S (2010) Rhinitis in the geriatric population. Allergy Asthma Clin Immunol 6(1):10. https://doi.org/10.1186/1710-1492-6-10
[46] Wolf G, Koidl B, Pelzmann B (1991) [Zur Regeneration des Zilienschlages humaner Flimmerzellen] Regeneration of the ciliary beat of human ciliated cells. Laryngorhinootologie 70(10): 552-555. https://doi.org/10.1055/s-2007-998095
[47] Daviskas E, Anderson SD, Gonda I, Eberl S, Meikle S, Seale JP, Bautovich G (1996) Inhalation of hypertonic saline aerosol enhances mucociliary clearance in asthmatic and healthy subjects. Eur Respir J 9(4):725-32. https://doi.org/ 10.1183/09031936.96.09040725
[48] Fu Y, Tong J, Meng F, Hoeltig D, Liu G, Yin X, Herrler G (2018) Ciliostasis of airway epithelial cells facilitates influenza A virus infection. Vet Res 49(1):65. https://doi.org/10.1186/s13567-018-0568-0
[49] Keojampa BK, Nguyen MH, Ryan MW (2004) Effects of buffered saline solution on nasal mucociliary clearance and nasal airway patency. Otolaryngol Head Neck Surg 131(5):679-82. https://doi.org/10.1016/j.otohns.2004.05.026
[50] Sood N, Bennett WD, Zeman K, Brown J, Foy C, Boucher RC, Knowles MR (2003) Increasing concentration of inhaled saline with or without amiloride: effect on mucociliary clearance in normal subjects. Am J Respir Crit Care Med. 167(2):158-63. https://doi.org/ 10.1164/rccm.200204-293OC
[51] Kim C-H, Song MH, Ahn YE, Lee G-G, Yoon YH (2005) Effect of hypo-, iso- and hypertonic saline irrigation on secretory mucins and morphology of cultured human nasal epithelial cells. Acta Oto-Laryngologica 125:1296-1300. https://doi.org/10.1080/00016480510012381
[52] Sumaily I, Alarifi I, Alsuwaidan R, Alsiwat L, Alsaleh S (2020) Impact of nasal irrigation with iodized table salt solution on mucociliary clearance: proof-of-concept randomized control trial. Am J Rhinol Allergy 34(2):276-279. https://doi.org/10.1177/1945892419892172
[53] Min YG, Lee KS, Yun JB, Rhee C S, Rhyoo C, Koh YY et al. (2001) Hypertonic saline decreases ciliary movement in human nasal epithelium in vitro. Otolaryngol Head Neck Surg 124(3):313-316. https://doi.org/10.1067/mhn.2001.113145
[54] Bencova A, Vidan J, Rozborilova E, Kocan I (2012) The impact of hypertonic saline inhalation on mucociliary clearance and nasal nitric oxide. J Physiol Pharmacol 63(3):309-13. PMID: 22791646.
[55] Talbot AR, Herr TM, Parsons DS (1997) Mucociliary clearance and buffered hypertonic saline solution. Laryngoscope 1997;107(4):500-3. https://doi.org/10.1097/00005537-199704000-00013
[56] Bennett WD, Wu J, Fuller F, Balcazar JR, Zeman KL, et al. (2015) Duration of action of hypertonic saline on mucociliary clearance in the normal lung. J Appl Physiol 118(12):1483-90. https://doi.org/10.1152/japplphysiol.00404.2014
[57] Middleton PG, Pollard KA, Wheatley JR (2001) Hypertonic saline alters ion transport across the human airway epithelium. Eur Resp J 17: 195-199. https://erj.ersjournals.com/content/17/2/195
[58] Jiao J, Yang J, Li J, Li Y, Zhang L (2020) Hypertonic saline and seawater solutions damage sinonasal epithelial cell air-liquid interface cultures. Int Forum Allergy Rhinol 10(1):59-68. https://doi.org/10.1002/alr.22459
[59] Miwa M, Matsunaga M, Nakajima N, Yamaguchi S, Watanabe K (2007) Hypertonic saline alters electrical barrier of the airway epithelium. Otolaryngol Head Neck Surg 136(1):62-6. https://doi.org/ 10.1016/j.otohns.2006.08.013
[60] Hauptman G, Ryan MW (2007) The effect of saline solutions on nasal patency and mucociliary clearance in rhinosinusitis patients. Otolaryngol Head Neck Surg 137(5):815-21. https://doi.org/ 10.1016/j.otohns
[61] Balmes JR, Fine JM, Christian D, Gordon T, Sheppard D (1988) Acidity potentiates bronchoconstriction induced by hypoosmolar aerosols. Am Rev Respir Dis 138(1):35-39. https://doi.org/10.1164/ajrccm/138.1.35
[62] Makker HK, Holgate ST (1993) The contribution of neurogenic reflexes to hypertonic saline-induced bronchoconstriction in asthma. J Allergy Clin Immunol 92:82-88. https://doi.org/10.1016/0091-6749(93)90041-d
[63] Taube C, Holz O, Mücke M, Jörres RA, Magnussen H (2001) Airway response to inhaled hypertonic saline in patients with moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164:1810-1815. https://doi.org/10.1164/ajrccm.164.10.2104024
[64] Lowry RH, Wood AM, Higenbottam TW (1988) Effects of pH and osmolarity on aerosol-induced cough in normal volunteers. Clin Sci (Lond) 74 (4): 373–376. https://doi.org/org/10.1042/cs0740373
[65] Elkins MR, Bye PT (2011) Mechanisms and applications of hypertonic saline. J R Soc Med 104 (Suppl 1):S2-S5. https://doi.org/10.1258/jrsm.2011.s11101
[66] Goralski JL, Wu D, Thelin WR, Boucher RC, Button B (2018) The in vitro effect of nebulised hypertonic saline on human bronchial epithelium. Eur Respir J 51(5):1702652. https://doi.org/ 10.1183/13993003.02652-2017
[67] Fahy JV, Dickey BF (010) Airway mucus function and dysfunction. N Engl J Med 2363(23):2233-2247. https://doi.org/10.1056/NEJMra0910061
[68] Mandelberg A, Amirav I (2010) Hypertonic saline or high volume normal saline for viral bronchiolitis: mechanisms and rationale. Paed pulmonol 45:36-40. https://doi.org/org/10.1002/ppul.21185
[69] Bartoszewski R, Matalon S, Collawn JF(2017) Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol 313(5):L859-L872. https://doi.org/10.1152/ajplung.00285.2017
[70] Hollenhorst MI, Richter K, Fronius M (2011) Ion transport by pulmonary epithelia. J Biomed Biotechnol Article ID 174306,16pages. htpps://doi.org/10.1155/2011/174306
[71] Iwan IH, Dziembowska I & Słonina DA (2019) Airways surface liquid and ion Transport - The mechanism maintained patency. Biomedical Journal of Scientific & Technical Research14(3):1-7. (doi:10.26717/BJSTR.2019.14.002543) https://biomedres.us/fulltexts/BJSTR.MS.ID.002543.php
[72] Wills PJ, Hall RL, Chan Wm, Cole PJ (1997) Sodium chloride increases the ciliary transportability of cystic fibrosis and bronchiectasis sputum on the mucus-depleted bovine trachea. J Clin Inv 99(1):9–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507760/pdf/990009.pdf
[73] McCullagh CM, Jamieson AM, Blackwell J, Gupta R (1995) Viscoelastic properties of human tracheobronchial mucin in aqueous solution. Biopolymers 35(2):149-159. https://doi.org/10.1002/bip.360350203
[74] Button B, Goodell HP, Atieh E, Chen Y-C, Williams R, et al. (2018) Roles of mucus adhesion and cohesion in cough clearance. PNAS 115 (49):12501-12506. https://doi.org/10.1073/pnas.1811787115
[75] Lin L, Chen Z, Cao Y, Sun G (2017) Normal saline solution nasal-pharyngeal irrigation improves chronic cough associated with allergic rhinitis. Am J Rhinol Allergy 31(2):96-104. https://doi.org/10.2500/ajra.2017.31.4418
[76] Lillehoj EP, Kato K, Lu W, Kim KC (2013) Cellular and molecular biology of airway mucins. Int Rev Cell Mol Biol 303:139-202. https://doi.org/10.1016/B978-0-12-407697-6.00004-0
[77] Lieleg O, Vladescu I, Ribbeck K (2010) Characterization of particle translocation through mucin hydrogels. Biophys J 98:1782–1789. https://doi.org/10.1016/j.bpj.2010.01.012
[78] Jayaweera M, Perera H, Gunawardana B, Manatunge J (2020) Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ Res 188:109819. https://doi.org/10.1016/j.envres.2020.109819
[79] WHO (2020) Transmission of SARS-CoV-2: implications for infection prevention precautions. https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
[80] Ehre C (2020) SARS-CoV-2 infection of airway cells. N Engl J Med 383:969. https://doi.org/10.1056/NEJMicm2023328
[81] Zhu N, Wang W, Liu Z , Liang C, Wang W, Ye F (2020) Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat Commun 11:3910. https://doi.org/ 10.1038/s41467-020-17796-z
[82] Robinot R, Hubert M, Dias de Mehlo G, Lazarini F, Bruel T, et al. (2020) SARS-CoV-2 infection damages airway motile ciliaand impairs mucociliary clearance. bioRxiv https://doi.org/10.1101/2020.10.06.328369
[83] Baker AN, Richards SJ, Guy CS, Congdon TR, Hasan M, et al. (2020) The SARS-COV-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Cent Sci https://doi.org/10.1021/acscentsci.0c00855
[84] Hao W, Ma B, Li Z, Wang X, Gao X, Li Y (2020) Binding of the SARS-CoV-2 spike protein to glycans. bioRxiv https://doi.org/10.1101/2020.05.17.100537
[85] Rusznak C, Devalia JL, Lozewicz S, Davies RJ (1994) The assessment of nasal mucociliary clearance and the effect of drugs. Respir Med 88(2):89-101. https://doi.org/10.1016/0954-6111(94)90020-5
[86] Newster (2020) Eco-sustainable technology for the processing of healthcare waste (HCW), on-site or in centralized treatment centers. Coronaviruses: SARS, MERS and Covid19. 28/02/2020 http://www.newstergroup.com/news/coronaviruses__sars_mers_and_covid19
[87] Noda M , Hiyama TY (2015) The Nax Channel: What it is and what it does. The neuroscientist 21(4): 399-412. https://doi.org/10.1177/1073858414541009
[88] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, et al. (2020) SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
[89] Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, et al. (2020) New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med 18: art. No. 216. https://doi.org/ 10.1186/s12916-020-01673-z
[90] Sungnak W, Huang N, Bécavin C, Berg M, Queen R, et al. (2020) SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 26:681–687. https://doi.org/10.1038/s41591-020-0868-6
[91] Rushworth CA, Guy JL, Turner AJ (2008) Residues affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and ACE2) identified by site-directed mutagenesis. FEBS J 275(23):6033-6042. https://doi.org/10.1111/j.1742-4658.2008.06733
[92] Guy JL, Jackson RM, Acharya KR, Sturrock ED, Hooper NM, Turner AJ (2003) Angiotensin‐converting enzyme‐2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry 42(45):13185-13192. https://doi.org/10.1021/bi035268s
[93] Ou X, Liu Y, Lei X, Li P, Mi D, et al. (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11:1620. https://doi.org/10.1038/s41467-020-15562-9
[94] Zhou T, Tsybovsky Y, Olia AS, Gorman J, Rapp MA, et al. (2020) A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike. bioRxiv https://doi.org/10.1101/2020.07.04.187989
[95] Fischer H, Widdicombe JH (2006) Mechanisms of acid and base secretion by the airway epithelium. J Membr Biol 211(3):139-50. https://doi.org/10.1007/s00232-006-0861-0
[96] Anand P, Puranik A, Aravamudan M, Venkatakrishnan AJ, Soundararajan V (2020) SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. eLife 9:e58603. https://doi.org/10.7554/eLife.58603
[97] Jaimes JA, Millet JK, Whittaker GR (2020) Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 23:101212. https://doi.org/10.1016/j.isci.2020.101212
[98] Ji HL, Zhao R, Matalon S, Matthay MA (2020) Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev 100(3):1065-1075. https://doi.org/10.1152/physrev.00013.2020.
[99] Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284(31):20447-51. https://doi.org/10.1074/jbc.R800083200.
[100] Marunaka Y, Marunaka R, Sun H, Yamamoto T, Kanamura N, Taruno A (2016) Na+ homeostasis by epithelial Na+ channel (ENaC) and Nax channel (Nax): cooperation of ENaC and Nax. ATM 4(Suppl 1):S11. https://doi.org/10.21037/atm.2016.10.42
[101] Speir RW (1961) Effect of several inorganic salts on the infectivity of Mengo virus. Proc Soc Exp Biol Med 106:402–404. https://doi.org/10.3181/00379727-106-26352.
[102] Ramalingam S, Cai B, Wong J, Twomey M, Chen R, et al. (2018) Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci Rep 8:13630. https://doi.org/10.1038/s41598-018-31936-y
[103] Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A (2020) Hypertonic saline nasal irrigation and gargling should be considered as a treatment option for COVID-19. J Glob Health 10(1):010332. https://doi.org/10.7189/jogh.10.010332
[104] Regelmann WE, Schneider LA, Fahrenkrug SC, Gray BH, Johnson S, et al. (1997) Proteinase-free myeloperoxidase increases airway epithelial permeability in a whole trachea model. Pediatr Pulmonol 24(1):29-34. https://doi.org/10.1002/(sici)1099-0496(199707)24:1<29::aid-ppul5>3.0.co 2-e
[105] Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM (2013) Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 93(2):185-198. https://doi.org/10.1189/jlb.0712349
[106] Haegens A, Vernooy JHJ, Heeringa P, Mossman BT, Wouters EFM (2008) Myeloperoxidase modulates lung epithelial responses to pro-inflammatory agents. Eur Respiratory J 31:252-260. https://doi.org/10.1183/09031936.00029307
[107] Casciaro M, Di Salvo E, Pace E, Ventura-Spagnolo E, Navarra M, Gangemi S (2017) Chlorinative stress in age-related diseases: a literature review. Immun Ageing 14:21. https://doi.org/10.1186/s12979-017-0104-5
[108] Khan AA, Alsahli MA, Rahmani AH (2018) Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci (Basel) 6(2):33. https://doi.org/10.3390/medsci6020033
[109] Kettle AJ, Chan T, Osberg I, Senthilmohan R, Chapman AL, et al. (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170(12):1317-1323. https://doi.org/10.1164/rccm.200311-1516OC
[110] Zuo Y, Zuo M, Yalavarthi S, Gockman K, Madison JA, et al. (2020) Neutrophil extracellular traps in COVID-19. JCI Insight 5(11):e138999. https://doi.org/10.1172/jci.insight.138999.
[111] Suzuki K, Yamada M, Akashi K, Fujikura T (1986) Similarity of kinetics of three types of myeloperoxidase from human leukocytes and four types from HL-60. Arch Biochem Biophysics 245(1):167-173. https://doi.org/10.1016/0003-9861(86)90201-8
[112] Wang G, Nauseef WM (2015) Salt, chloride, bleach, and innate host defense. J Leukocyte Biol 98(2): 163–172. https://doi.org/10.1189/jlb.4RU0315-109R
[113] Zhang N, Francis KP, Prakash A, Ansaldi D (2013) Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat Med 19(4):500-505. https://doi.org/10.1038/nm.3110
[114] Chandler JD, Day BJ (2012) Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol 84(11):1381-1387. https://doi.org/10.1016/j.bcp.2012.07.029
[115] Darnell ME, Subbarao K, Feinstone SM, Taylor DR (2004) Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods 121(1):85-91. https://doi.org/10.1016/j.jviromet.2004.06.006
[116] House SA, Gadomski AM, Ralston SL (2020) Evaluating the placebo status of nebulized normal saline in patients with acute viral bronchiolitis. A systematic review and meta-analysis. JAMA Pediatr 174(3):250-259. https://doi.org/10.1001/jamapediatrics.2019.5195.
[117] Sauvaget E, David M, Bresson V, Retornaz K, Bosdure E, Dubus JC (2012) Sérum salé hypertonique nébulisé et bronchiolite aiguë du nourrisson : données actuelles [Nebulized hypertonic saline and acute viral bronchiolitis in infants: current aspects]. Arch Pediatr 19(6):635-41. https://doi.org/10.1016/j.arcped.2012.03.018
[118] Zhang L, Mendoza-Sassi RA, Wainwright C, Klassen TP (2017) Nebulised hypertonic saline solution for acute bronchiolitis in infants. Cochrane Database Syst Rev12(12):CD006458. https://doi.org/10.1002/14651858.CD006458.pub4
[119] Hsieh CW, Chen C, Su HC, Chen KH (2020) Exploring the efficacy of using hypertonic saline for nebulizing treatment in children with bronchiolitis: a meta-analysis of randomized controlled trials. BMC Pediatr 20(1):434. https://doi.org/ 10.1186/s12887-020-02314-3
[120] Angoulvant F, Bellêttre X, Milcent K, Teglas JP, Claudet I, et al. (2017) Effect of nebulized hypertonic saline treatment in emergency departments on the hospitalization rate for acute bronchiolitis: a randomized clinical trial. JAMA Pediatr 171(8):e171333. https://doi.org/10.1001/jamapediatrics.2017.1333.
[121] Everard ML, Hind D, Ugonna K, Freeman J, Bradburn M, et al. (2015) Saline in acute bronchiolitis RCT and economic evaluation: hypertonic saline in acute bronchiolitis - randomised controlled trial and systematic review. Health Technol Assess 19(66):1-130. https://doi.org/10.3310/hta19660.
[122] Morikawa Y, Miura M, Furuhata MY, Morino S, Omori T, et al. (2018) Tokyo Pediatric Clinical Research Network. Nebulized hypertonic saline in infants hospitalized with moderately severe bronchiolitis due to RSV infection: A multicenter randomized controlled trial. Pediatr Pulmonol 53(3):358-365. https://doi.org/ 10.1002/ppul.23945
[123] WHO (2020) Saline. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters#saline
[124] WHO (2020) Can rinsing your nose regularly with saline solution prevent Covid-19?. https://www.who.int/docs/default-source/searo/thailand/12myths-final099bfbf976c54d5fa3407a65b6d9fa9d.pdf
[125] King D, Mitchell B, Williams CP, Spurling GKP (2015) Saline nasal irrigation for acute upper respiratory tract infections. Cochrane Database of Systematic Reviews Issue 4. Art. No.: CD006821. HTTPS://DOI.ORG/ 10.1002/14651858.CD006821.pub3
[126] Cabaillot A, Vorilhon P, Roca M, Boussageon R, Eschalier B, Pereirad B (2020) Saline nasal irrigation for acute upper respiratory tract infections in infants and children: A systematic review and meta-analysis. Paediatr Respir Rev S1526-0542(20)30016-6. https://doi.org/ 10.1016/j.prrv.2019.11.003
[127] Slapak I, Skoupa J, Strnad P, Hornik P (2008) Efficacy of isotonic nasal wash (seawater) in the treatment and prevention of rhinitis in children. Arch Otolaryngol Head Neck Surg 134:67–74. https://doi.org/10.1001/archoto.2007.19
[128] Tano L, Tano KA (2004) daily nasal spray with saline prevents symptoms of rhinitis. Acta Otolaryngol 124 (9) 1059- 1062. https://doi.org/10.1080/00016480410017657
[129] The University of Edinburgh (2020) ELVIS-COVID-19. https://www.ed.ac.uk/usher/elvis-covid-19/contact-us
[130] ClinicalTrials.gov Identifier: NCT04382131. Hypertonic saline nasal irrigation and gargling in suspected or confirmed COVID-19 (ELVIS COVID-19). https://clinicaltrials.gov/ct2/show/NCT04382131?term=saline&cond=covid-19&draw=2&rank=6
[131] Borah H, Goswami A (2020) Nasal irrigation in Covid-19 pandemic: is it justified? IOSR-JDMS 19:19-21. https://doi.org/10.9790/0853-1906071921
[132] Nimsakul S, Ruxrungtham S, Chusakul S, Kanjanaumporn J, Aeumjaturapat S, Snidvongs K (2018) Does heating up saline for nasal irrigation improve mucociliary function in chronic rhinosinusitis? Am J Rhinol Allergy 32(2):106-111. https://doi.org/10.1177/1945892418762872.
[133] Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, et al. (2020) SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182(2):429-446.e14. https://doi.org/10.1016/j.cell.2020.05.042
[134] Bastier PL, Lechot A, Bordenave L, Durand M, de Gabory L (2015) Nasal irrigation: From empiricism to evidence-based medicine. A review. Eur Ann Otorhinolaryngol Head Neck Dis 132(5):281-5. https://doi.org/10.1016/j.anorl.2015.08.001.
[135] Niedner R (1997) Cytotoxicity and sensitization of povidone-iodine and other frequently used anti-infective agents. Dermatology 195 Suppl 2:89-92. https://doi.org/10.1159/000246038
[136] Gudmundsdottir Á, Scheving R, Lindberg F, Stefansson B (2020) Inactivation of SARS‐CoV‐2 and HCoV‐229E in vitro by ColdZyme® a medical device mouth spray against the common cold. J Med Virol https://doi.org/org/10.1002/jmv.26554
[137] Kido H (2015) Influenza virus pathogenicity regulated by host cellular proteases, cytokines and metabolites, and its therapeutic options. Proc Jpn Acad Ser B Phys Biol Sci 91(8):351-68. https://doi.org/10.2183/pjab.91.351