[1] CARMEN Z. & DANIELA S. (2012). Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents –a critical overview. In: Puzyn T (eds.) Organic pollutants ten years after the Stockholm convention-environmental and analytical update, In Tech Press, Crotia, pp. 55-86.
[2] HAR BHAJAN S. & BHARATI, KA. (2014). History of natural dyes. In: Singh HB, Bharati KA (eds.) Handbook of Natural Dyes and Pigments, Woodhead Publishing India, pp. 4-8.
[3] GURSES A., AÇIKYILDIZ M., GÜNES K. & GÜRSES MS. (2016). Dyes and pigments: their structure and properties (ed): Charma, Sanjay K, Spinger Briefs in Molecular Science, pp. 13-29.
[4] HELMY HM., SHAKOUR AA., KAMEL MM. & RASHED, SS. (2015). Impacts of Air Pollution on Colour Fading and Physical Properties of Wool Yarns Dyed with Some Natural Dyes in Residential Site. Journal Textile Science & Engineering, vol. 5, n° 6, 221 p.
[5] CAMPOS R., KANDELBAUER A., ROBRA K.H., ARTUR C.P, & GUBITZ G.M. (2001). Indigo degradation with purified laccases from Trametes hirsute and Sclerotim rolfsii. Journal of Biotechnology, vol. 89, n° (2-3), pp.131-139.
[6] ASIF TAHIR M., BHATTI H. N. & IQBAL M. (2016). Solar red and brittle blue direct dyes adsorption onto eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies. Journal of Environmental Chemical Engineering, vol. 4, n° 2, pp. 2431-2439.
[7] HOSSAIN K., QUAIK S., ISMAIL N., RAFATULLAH M., AVASAN M. & SHAIK R. (2016). Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater. Iranian Journal of Biotechnology, vol. 3, n° 3, pp. 154-162.
[8] YAGUB M.T., SEN T. K., AFROZE S. & ANG H. M. (2014). Dye and its removal from aqueous solution by adsorption. Advances in Colloid Interface Science, vol. 209, pp. 172-184.
[9] SAKIN OMER O., HUSSEIN M.A., HUSSEIN BHM. & MGAIDI A. (2017). Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arabian Journal of Chemistry, vol. 11, n° 5, pp. 615-623
[10] VISHWAKARMA S. K., SINGH M. P., SRIVASTAVA A.K. & PANDEY V. K. (2012). Azo dye (direct blue 14) decolourization by immobilized extracellular enzymes of pleurotus species. Cellular & Molecular Biology, vol. 58, n° 1, pp. 21-25.
[11] KANT R. (2012). Textile dyeing industry an environmental hazard. Natural Science, vol. 4, n° 1, pp. 22-26.
[12] ABOU-GAMRA Z. M. (2014). Kinetic and Thermodynamic Study for Fenton-Like Oxidation of Amaranth Red Dye. Advances in Chemical Engineering and Science, vol. 4, n° 3, pp. 285-291.
[13] Sing P, Nadim A & Ezzedeen SR (2012) Leadership styles and gender: An extension. Journal of Leadership studies, vol. 5, n° 4, pp. 6-19.
[14] BES-PIA A., MENDOZA-ROCA J. A., ROIG-ALCOVER L., IBORRA-CLAR A. & ALCAINA-MIRANDA M. I. (2004). Nanofiltration of biologically treated textile effluents using ozone as a pre-treatment. Desalination, vol. 167, pp. 387-392.
[15] BEREZ A., AYARI F., ABIDI N., SCHAFER G. & TRABELSI- AYADI M. (2014). Adsorption-desorption processus of azo dye on natural bentonite: batch experiments and modeling. Clay Minerals, vol. 49, pp. 747-763.
[16] DANESHVAR N., SALARI D. & KHATAEE A. R. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of optional parameters. Journal of Photochemistry and Phtobiology A: Chemistry, vol. 157, pp. 111-116.
[17] GȎMEZ V., LARRECHI M. S. & CALLAO M.P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, vol. 69, n° 7, pp. 1151-1158.
[18] HATTAB A., BAGANE M. & CHLENDI M. (2013). Characterization of Tataouine’s Raw and Activated Clay Chemical Engineering of Process Technology, vol. 4, n° 4, p. 155.
[19] BERGAYA F., THENG B. K. G. & LAGALY G. (2006). Handbook of Clay Science. Elsevier, Developments of Clay Science, 1st edn. Volume 1, Amsterdam, p. 124.
[20] JAMOUSSI F., BOUKADI N., BEDIR M., KHARBACHI S., ZARGOUNI F., GALINDO L. & PAQUET H. (2003). Répartition des minéraux argileux et contrôle tectonoeustatique dans les bassins de la marge Tunisienne, Clay mineralogical distribution and tecto-eustatic contol in the Tunisian margin basins. Comptes rendus Geoscience, vol. 335, pp. 175-183.
[21] CHAKROUN S., MECHTI W., HERCHI M., & GAIED M.E. (2018). Characterization of Ain M’Dheker clay deposits for sunflower oil and acid black 194 dye clarification. Arabian Journal of Geosciences, vol. 11, n° 60, 1-14.
[22] ELOUSSAIEF M. & BENZINA M. (2010). Efficiency of natural and acid-activated clays in the removal of Pb (II) from aqueous solutions. Journal of Hazardous Materials, vol. 178, n° 1-3, pp. 753–757.
[23] WOUMFO D., KAMGA R., FIGUERAS F. & NJOPWOUA D. (2007). Acid activation and bleaching capacity of some Cameroonian smectite soil clays. Applied Clay Science, vol. 37, n° 1-2, pp. 149-156.
[24] CHAKROUN S., HERCHI M., MECHTI W. & GAIED E. M. (2017). Acid activation of upper Eocene Ca-bentonite for soybean oil clarification. Environmental Science and Pollution Research, vol. 24, n° 28, pp. 22557-22569.
[25] AGHDASINIA H. & RAHBARI ASIABI H. (2018). Adsorption of a cationic dye (methylene blue) by Iranian natural clays from aqueous solutions: equilibrium, kinetic and thermodynamic study. Environmental Earth Sciences, vol. 77, n° 5, pp. 218-242.
[26] TAHIR S. S. & NASEEM R. (2006). Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere, vol. 63, n° 11, pp. 1842‑1848.
[27] CHIENG H. I., ZEHRA T., LIM, LINDA B. L., PRIYANTHA N. & TENNAKOON D. T. B. (2014). Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. Environmental Earth Sciences, vol. 72, n° 7, pp. 2263-2277.
[28] ÖZBAY N., YARGIÇ A. Ş., YARBAY-ŞAHIN R.Z. & ÖNAL E. (2013). Full factorial experimental design analysis of reactive dye removal by carbon adsorption. Journal of Chemistry, 2013, Article ID 234904, 1–13.
[29] BRINDLEY G. (1951). X ray Identification and Crystal Structures of Clay Minerals: Mineralogical Society, London, p 345.
[30] BAGHDADLI M.C., MEGHABAR R. & BELBACHIR M. (2016). Acid-activation Algerian montmorillonite as Heterogeneous catalysts for cationic polymerisation of styrene. Asian Journal of Chemistry, vol. 28, n° 6, pp. 1197-1204.
[31] LAKEVIČS V., STEPANOVA V., Skuja L., Dušenkova I. & Ruplis A. (2014). Influence of alkali and acidic treatment on sorption properties of Latvian illite clays. Key Engineering Materials, vol. 604, pp. 71–74.
[32] FRANCISCO R., DÍAZ V. & SANTOS P. S. (2001). Studies on the acid activation of brazilian smectitic clays. Quim Nova, vol. 24, n° 3, pp. 345-353.
[33] MOSBAHI M., TLILI A., KHLIFI M. & JAMOUSSI F. (2017). Basic activation of lower Eocene clay from Meknassy-Mezzouna basin (centerwestern Tunisia), synthesis of zeolite and clarification of soybean oils. Applied Clay Science, vol. 138, pp. 1–11.
[34] SRASRA E. & TRABELSI-AYEDI M. (2000). Textural properties of acid activated glauconite. Applied Clay Science, vol. 17, n° 1-2, pp. 71-84.
[35] HUSSIN F., AROUA M. K. & WAN DAUD W. M. A. (2011). Textural characteristics, surface chemistry and activation of bleaching earth: a review. Chemical Engineering Journal, vol. 170, n° 1, pp. 90–106.
[36] BOUGUERRA NEJI S., TRABELSI M. & FRIKHA M. H. (2009). Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor. Energies, vol. 2, n° 4, pp. 1107-1117.
[37] AMARI A., CHLENDI M., GANNOUNI A. & BELLAGI A. (2010). Optimised Activation of Bentonite for Toluene Adsorption. Applied Clay Science, vol. 47, n° 3-4, pp. 457-461.
[38] BENDOU S. & AMRANI M. (2014) Effect of hydrochloric acid on the structural of sodic-bentonite clay. Journal of Minerals and Materials Characterization and Engineering , vol. 2, n° 5, pp. 404–413.
[39] BOUSSEN S., SGHAIER D., CHAABANI F., JAMOUSSI B., BEN MASSAOUD S. & BENNOUR A. (2015). The rheological, mineralogical and chemical characteristic of the original and the Na2CO3-activated Tunisian swelling clay (Aleg Formation) and their utilization as drilling mud. Applied Clay Science, vol. 118, pp. 344-353.
[40] NGUETNKAM J. P., KAMGA R., VILLIERAS F., EKODECK G. E., RAZAFITIANAMAHARAVO A & YVON J. (2005). Assessment of the smectite clays obtained by statistically designed experiments. Chemical Engineering Journal, vol. 137, n° 2, pp. 436-442.
[41] ZORICA P. T., SVETLANA B. A. , BILJANA M. B., VESNA A. P., ALEKSANDAR R. D. & SVJETLANA B. C. (2011). Modification of Smectite Structure by Sulphuric Acid and Characteristics of the Modified Smectite. Journal of Agricultural Science, vol. 56, pp. 25-35.
[42] USMAN M. A., EKWUEME V. I., ALAJE T. O. & MOHAMMED A. O. (2012). Characterization, acid activation, and bleaching performance of Ibeshe clay. Lagos, Nigeria, International Scholary Research Network ISRN Ceramics, pp. 1–5.
[43] TAYEBEE R. & MAZRUY V. (2018). Acid-thermal Activated Nanobentonite as an Economic Industrial Adsorbent for Malachite Green from Aqueous Solutions. Optimization, Isotherm, and Thermodynamic Studies. Journal of Water Environmental and Nanotechnol, vol. 3, n° 1, pp. 40-50.
[44] ONAL Y., AKMIL-BASAR C., EREN D., SARICI-OZDEMIR C. & DEPCI T. (2006). Adsorption Kinetics of malachite green onto activated carbon prepared from Tuncbilek lignite. Journal of Hazardous Materials, vol. 128, no. 2-3, pp. 150-157.
[45] SHIRMADI M., MESDAGHINIA A., MAHVI A. H., NASSERI S. & NABIZADEH R. (2012). Kinetics And Equilibrium Studies on Adsorption of Acid Red-18 (Azo-Dye)Using Multiwall Carbon Nanotubes (MWCNTs) from Aqueous Solution. E-Journal of Chemistry, vol. 9, n° 4, pp. 2371-2383.
[46] AJBARY M., SANTOS A., MORALES-FLOREZ V. & ESQUIVIAS L. (2013). Removal of basic yellow cationic dye by an aqueous dispersion of Moroccan stevensite. Applied Clay Science, n° 80-81, pp. 46-51.
[47] MEÇABIH Z., ROSE J. & BORSCHNECK D. (2014). Urban Wastewater Treatment by Adsorption of organic Matters on Modified Bentonite by (Iron-Aluminium). Journal of Encapsulation and Adsorption Sciences, vol. 4, n° 3, pp. 71-79.
[48] TSAI W. T., HSU H. C., SU T. Y., YU LIN K., LIN C. M. & DAI T. H. (2007). The adsorption of cationic dye from aqueous solution onto acid-activated andesite. Journal of Hazardous Materials, vol. 147, n° 3, pp. 1056-1062.
[49] ADEYEMO A. A., ADEOYE I. O., BELLO O. S. (2017). Adsorption of dyes using different types of clays. Applied Water Science, vol. 7, n°2, pp. 543-568.
[50] FARAHANI M., SHEIKH ABDULLAH S. R., HOSSEINI S., SHOJAEIPOUR S. & KASHISAZ M. (2011). Adsorption-based Cationic Dyes using the Carbon Active Surgarcance Bagasse. Procedia Environmental Sciences, vol. 10, pp. 203-208.
[51] HAMEED B. H., AHMAD A. L. & LATIFF K. N. A. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, vol. 75, n° 1, pp. 143-149.
[52] BENNANI KARIM A., MOUNIR B., HACHKAR M., BAKASSE M. & YAACOUBI A. (2010). Elimination du colorant basique « Bleu de méthylène » en solution aqueuse par l’argile de Safi. Revu des Sciences de l’eau, vol. 23, n° 4, pp. 375-388.
[53] GUPTA V. K., MITTAL A. & GAJBE V. (2005). Adsorption and desorption studies of water soluble dye, Quinoline Yellow, using waste materials. Journal of Colloid and Interface Science, vol. 284, n° 1, pp. 89-98.