1 Cele, S. et al. SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection. medRxiv : the preprint server for health sciences, doi:10.1101/2021.12.08.21267417 (2021).
2 WHO. Tracking SARS-CoV-2 variants, <https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/> (2021).
3 Baric, R. S. Emergence of a Highly Fit SARS-CoV-2 Variant. The New England journal of medicine 383, 2684-2686, doi:10.1056/NEJMcibr2032888 (2020).
4 Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science (New York, N.Y.) 372, doi:10.1126/science.abg3055 (2021).
5 Lubinski, B., Tang, T., Daniel, S., Jaimes, J. A. & Whittaker, G. R. Functional evaluation of proteolytic activation for the SARS-CoV-2 variant B.1.1.7: role of the P681H mutation. bioRxiv : the preprint server for biology, doi:10.1101/2021.04.06.438731 (2021).
6 Srivastava, S., Banu, S., Singh, P., Sowpati, D. T. & Mishra, R. K. SARS-CoV-2 genomics: An Indian perspective on sequencing viral variants. Journal of biosciences 46, doi:10.1007/s12038-021-00145-7 (2021).
7 Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184, 2348-2361.e2346, doi:10.1016/j.cell.2021.02.037 (2021).
8 Khan, A. et al. Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of cellular physiology 236, 7045-7057, doi:10.1002/jcp.30367 (2021).
9 Ozono, S. et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nature communications 12, 848, doi:10.1038/s41467-021-21118-2 (2021).
10 Augusto, G. et al. In vitro data suggest that Indian delta variant B.1.617 of SARS-CoV-2 escapes neutralization by both receptor affinity and immune evasion. Allergy, doi:10.1111/all.15065 (2021).
11 WHO. Weekly epidemiological update on COVID-19 - 14 December 2021. (2021).
12 Sheikh, A., McMenamin, J., Taylor, B. & Robertson, C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet (London, England) 397, 2461-2462, doi:10.1016/s0140-6736(21)01358-1 (2021).
13 Twohig, K. A. et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. The Lancet. Infectious diseases, doi:10.1016/s1473-3099(21)00475-8 (2021).
14 Gu, H. et al. Probable Transmission of SARS-CoV-2 Omicron Variant in Quarantine Hotel, Hong Kong, China, November 2021. Emerging infectious diseases 28, doi:10.3201/eid2802.212422 (2021).
15 Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116-121, doi:10.1038/s41586-020-2895-3 (2021).
16 Hui, K. P. et al. Tropism and innate host responses of influenza A/H5N6 virus: an analysis of ex vivo and in vitro cultures of the human respiratory tract. The European respiratory journal 49, doi:10.1183/13993003.01710-2016 (2017).
17 Chan, M. C. et al. Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract. The Lancet. Respiratory medicine 1, 534-542, doi:10.1016/s2213-2600(13)70138-3 (2013).
18 Chan, R. W. et al. Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study. The Lancet. Respiratory medicine 2, 813-822, doi:10.1016/s2213-2600(14)70158-4 (2014).
19 Zhou, Z. et al. Phenotypic and genetic characterization of MERS coronaviruses from Africa to understand their zoonotic potential. Proceedings of the National Academy of Sciences of the United States of America 118, doi:10.1073/pnas.2103984118 (2021).
20 Chu, D. K. W. et al. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proceedings of the National Academy of Sciences of the United States of America 115, 3144-3149, doi:10.1073/pnas.1718769115 (2018).
21 Hui, K. P. Y. et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. The Lancet. Respiratory medicine, doi:10.1016/s2213-2600(20)30193-4 (2020).
22 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, doi:10.1016/j.cell.2020.02.052 (2020).
23 Blume, C. et al. A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nature genetics 53, 205-214, doi:10.1038/s41588-020-00759-x (2021).
24 Agency, U. H. S. SARS-CoV-2 variants of concern and variants under investigation (2021).
25 Adenaiye, O. O. et al. Infectious SARS-CoV-2 in Exhaled Aerosols and Efficacy of Masks During Early Mild Infection. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, doi:10.1093/cid/ciab797 (2021).
26 Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. 2021.2012.2012.472269, doi:10.1101/2021.12.12.472269 %J bioRxiv (2021).
27 Wu, H. et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell host & microbe 29, 1788-1801.e1786, doi:10.1016/j.chom.2021.11.005 (2021).
28 Allen, H. et al. Household transmission of COVID-19 cases associated with SARS-CoV-2 delta variant (B.1.617.2): national case-control study. The Lancet regional health. Europe 12, 100252, doi:10.1016/j.lanepe.2021.100252 (2022).
29 Li, H., Liu, T., Wang, L., Wang, M. & Wang, S. SARS-CoV-2 Delta variant infects ACE2(low) primary human bronchial epithelial cells more efficiently than other variants. Journal of medical virology, doi:10.1002/jmv.27372 (2021).
30 Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114-119, doi:10.1038/s41586-021-03944-y (2021).
31 Liu, Y. et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. bioRxiv : the preprint server for biology, doi:10.1101/2021.08.12.456173 (2021).
32 Lubinski, B. et al. Spike protein cleavage-activation mediated by the SARS-CoV-2 P681R mutation: a case-study from its first appearance in variant of interest (VOI) A.23.1 identified in Uganda. bioRxiv : the preprint server for biology, doi:10.1101/2021.06.30.450632 (2021).
33 Dyer, O. Covid-19: Omicron is causing more infections but fewer hospital admissions than delta, South African data show. BMJ (Clinical research ed.) 375, n3104, doi:10.1136/bmj.n3104 (2021).
34 Ferguson N, G. A., Cori A, Hogan A, Hinsley W, Volz E on behalf of the Imperial College COVID-19 response team. Report 49 - Growth, population distribution and immune escape of Omicron in England. . (2021).
35 Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proceedings of the National Academy of Sciences of the United States of America 117, 7001-7003, doi:10.1073/pnas.2002589117 (2020).
36 Hui, K. P. Y. et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. The Lancet. Respiratory medicine 8, 687-695, doi:10.1016/s2213-2600(20)30193-4 (2020).
37 Chan, M. C. et al. Tropism and innate host responses of the 2009 pandemic H1N1 influenza virus in ex vivo and in vitro cultures of human conjunctiva and respiratory tract. The American journal of pathology 176, 1828-1840, doi:10.2353/ajpath.2010.091087 (2010).
38 Hui, K. P. et al. Tropism and innate host responses of influenza A/H5N6 virus: an analysis of ex vivo and in vitro cultures of the human respiratory tract. The European respiratory journal 49, doi:10.1183/13993003.01710-2016 (2017).
39 Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie 162, 480-483, doi:10.1007/BF01863914 (1931).
40 Chan, R. W. et al. DAS181 inhibits H5N1 influenza virus infection of human lung tissues. Antimicrob Agents Chemother 53, 3935-3941, doi:AAC.00389-09 [pii]10.1128/AAC.00389-09 (2009).
41 Hui, K. P. et al. H5N1 influenza virus-induced mediators upregulate RIG-I in uninfected cells by paracrine effects contributing to amplified cytokine cascades. The Journal of infectious diseases 204, 1866-1878, doi:10.1093/infdis/jir665 (2011).
42 Hui, K. P. et al. Induction of proinflammatory cytokines in primary human macrophages by influenza A virus (H5N1) is selectively regulated by IFN regulatory factor 3 and p38 MAPK. J Immunol 182, 1088-1098, doi:10.4049/jimmunol.182.2.1088 (2009).
43 Bui, C. H. T. et al. Tropism of SARS-CoV-2, SARS-CoV, and Influenza Virus in Canine Tissue Explants. J Infect Dis 224, 821-830, doi:10.1093/infdis/jiab002 (2021).