1 Descloux, A. et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nat. Photonics 12, 165-172, doi:10.1038/s41566-018-0109-4 (2018).
2 Pérez Cota, F. et al. High resolution 3D imaging of living cells with sub-optical wavelength phonons. Sci. Rep. 6, 1-11, doi:10.1038/srep39326 (2016).
3 Taute, K., Gude, S., Tans, S. & Shimizu, T. High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nat. Commun. 6, 1-9, doi:10.1038/ncomms9776 (2015).
4 Liu, H. et al. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments. Lab Chip 17, 1280-1286, doi:10.1039/C7LC00078B (2017).
5 Habaza, M. et al. Rapid 3D refractive‐index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation. Adv. Sci. 4, 1600205, doi:10.1002/advs.201600205 (2017).
6 Gundlach, H. Phase contrast and differential interference contrast instrumentation and applications in cell, developmental, and marine biology. Opt. Eng. 32, 3223-3228, doi:10.1117/12.142945 (1993).
7 Bereiter Hahn, J., Fox, C. H. & Thorell, B. Quantitative reflection contrast microscopy of living cells. J. Cell Biol. 82, 767-779, doi:10.1083/jcb.82.3.767 (1979).
8 Chang, T., Shin, S., Lee, M. & Park, Y. Computational approach to dark-field optical diffraction tomography. APL Photonics 5, 040804, doi:10.1063/1.5130529 (2020).
9 Lee, C. et al. Label-free three-dimensional observations and quantitative characterisation of on-chip vasculogenesis using optical diffraction tomography. Lab Chip 21, 494-501, doi:10.1039/d0lc01061h (2021).
10 Shin, S., Kim, D., Kim, K. & Park, Y. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci. Rep. 8, 1-8, doi:10.1038/s41598-018-27399-w (2018).
11 Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng. 2, 020201, doi:10.18287/jbpe16.02.020201 (2016).
12 Scholler, J. et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light Sci. Appl. 9, 1-9, doi:10.1038/s41377-020-00375-8 (2020).
13 Kozacki, T., Kujawińska, M. & Kniażewski, P. Investigation of limitations of optical diffraction tomography. Opto-electron. Rev. 15, 102-109, doi:10.2478/s11772-007-0006-8 (2007).
14 Parikesit, G. O., Darmawan, M. & Faisal, A. Quantitative low-cost webcam-based microscopy. Opt. Eng. 49, 113205, doi:10.1117/1.3517747 (2010).
15 Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889-895, doi:10.1038/nmeth.2114 (2012).
16 Greenbaum, A., Akbari, N., Feizi, A., Luo, W. & Ozcan, A. Field-portable pixel super-resolution colour microscope. PLoS One 8, e76475, doi:10.1371/journal.pone.0076475 (2013).
17 Navruz, I. et al. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip 13, 4015-4023, doi:10.1039/c3lc50589h (2013).
18 Sanz, M., Picazo Bueno, J. Á., Granero, L., García, J. & Micó, V. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy. Sci. Rep. 7, 43291, doi:10.1038/srep43291 (2017).
19 Purwar, P. et al. High-resolution cost-effective compact portable inverted light microscope. J. Microsc. 273, 199-209, doi:10.1111/jmi.12775 (2019).
20 Jiang, S. et al. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip 20, 1058-1065, doi:10.1039/c9lc01027k (2020).
21 Sund, S. E., Swanson, J. A. & Axelrod, D. Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys. J. 77, 2266-2283, doi:10.1016/s0006-3495(99)77066-9 (1999).
22 Wei, N., You, J., Friehs, K., Flaschel, E. & Nattkemper, T. W. In situ dark field microscopy for on-line monitoring of yeast cultures. Biotechnol. Lett. 29, 373-378, doi:10.1007/s10529-006-9245-x (2007).
23 Taylor, M. A. & Bowen, W. P. Enhanced sensitivity in dark-field microscopy by optimizing the illumination angle. Appl. Opt. 52, 5718-5723, doi:10.1364/ao.52.005718 (2013).
24 Cybulski, J. S., Clements, J. & Prakash, M. Foldscope: origami-based paper microscope. PLoS One 9, e98781, doi:10.1371/journal.pone.0098781 (2014).
25 Walzik, M. P. et al. A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens. Bioelectron. 64, 639-649, doi:10.1016/j.bios.2014.09.061 (2015).
26 Sharkey, J. P., Foo, D. C., Kabla, A., Baumberg, J. J. & Bowman, R. W. A one-piece 3D printed flexure translation stage for open-source microscopy. Rev. Sci. Instrum. 87, 025104, doi:10.1063/1.4941068 (2016).
27 Jung, D. et al. Smartphone-based multi-contrast microscope using color-multiplexed illumination. Sci. Rep. 7, 7564, doi:10.1038/s41598-017-07703-w (2017).
28 Sun, D. & Hu, T. Y. A low cost mobile phone dark-field microscope for nanoparticle-based quantitative studies. Biosens. Bioelectron. 99, 513-518, doi:10.1016/j.bios.2017.08.025 (2018).
29 Huang, Y. C., Lei, K. F., Liaw, J. W. & Tsai, S. W. The influence of laser intensity activated plasmonic gold nanoparticle-generated photothermal effects on cellular morphology and viability: a real-time, long-term tracking and monitoring system. Photochem. Photobiol. Sci. 18, 1419-1429, doi:10.1039/c9pp00054b (2019).
30 Guo, Y. et al. Activated plasmonic nanoaggregates for dark-field situ imaging for HER2 protein imaging on cells surface. Bioconjug. Chem. 31, 631-638, doi:10.1021/acs.bioconjchem.9b00787 (2020).