[1] N. Fujita, A. Sakurai, A. Miyamoto, T. Michikawa, O. Tsuji, N. Nagoshi, E. Okada, M. Yagi, Y. Otaka, T. Tsuji, H. Kono, K. Ishii, M. Nakamura, M. Matsumoto, K. Watanabe, Lumbar spinal canal stenosis leads to locomotive syndrome in elderly patients, J Orthop Sci 24(1) (2019) 19-23.
[2] G.C. Brown, Living too long: the current focus of medical research on increasing the quantity, rather than the quality, of life is damaging our health and harming the economy, EMBO Rep 16(2) (2015) 137-41.
[3] S. Genevay, S.J. Atlas, Lumbar spinal stenosis, Best Pract Res Clin Rheumatol 24(2) (2010) 253-65.
[4] B.H. Lee, S.H. Moon, K.S. Suk, H.S. Kim, J.H. Yang, H.M. Lee, Lumbar Spinal Stenosis: Pathophysiology and Treatment Principle: A Narrative Review, Asian Spine J 14(5) (2020) 682-693.
[5] J. Chen, Z. Liu, G. Zhong, L. Qian, Z. Li, Z. Qiao, B. Chen, H. Wang, Hypertrophy of ligamentum flavum in lumbar spine stenosis is associated with increased miR-155 level, Dis Markers 2014 (2014) 786543.
[6] P.W.H. Cheung, V. Tam, V.Y.L. Leung, D. Samartzis, K.M. Cheung, K.D. Luk, J.P.Y. Cheung, The paradoxical relationship between ligamentum flavum hypertrophy and developmental lumbar spinal stenosis, Scoliosis Spinal Disord 11(1) (2016) 26.
[7] K. Sairyo, A. Biyani, V. Goel, D. Leaman, R. Booth, Jr., J. Thomas, D. Gehling, L. Vishnubhotla, R. Long, N. Ebraheim, Pathomechanism of ligamentum flavum hypertrophy: a multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments, Spine (Phila Pa 1976) 30(23) (2005) 2649-56.
[8] H.J. Moon, Y.K. Park, Y. Ryu, J.H. Kim, T.H. Kwon, H.S. Chung, J.H. Kim, The angiogenic capacity from ligamentum flavum subsequent to inflammation: a critical component of the pathomechanism of hypertrophy, Spine (Phila Pa 1976) 37(3) (2012) E147-55.
[9] J.B. Park, H. Chang, J.K. Lee, Quantitative analysis of transforming growth factor-beta 1 in ligamentum flavum of lumbar spinal stenosis and disc herniation, Spine (Phila Pa 1976) 26(21) (2001) E492-5.
[10] K. Sairyo, A. Biyani, V.K. Goel, D.W. Leaman, R. Booth, Jr., J. Thomas, N.A. Ebraheim, I.A. Cowgill, S.E. Mohan, Lumbar ligamentum flavum hypertrophy is due to accumulation of inflammation-related scar tissue, Spine (Phila Pa 1976) 32(11) (2007) E340-7.
[11] S.J. Atlas, A. Delitto, Spinal stenosis: surgical versus nonsurgical treatment, Clin Orthop Relat Res 443 (2006) 198-207.
[12] W.T. Enthoven, P.D. Roelofs, R.A. Deyo, M.W. van Tulder, B.W. Koes, Non-steroidal anti-inflammatory drugs for chronic low back pain, Cochrane Database Syst Rev 2 (2016) CD012087.
[13] P. Handa, S. Thomas, V. Morgan-Stevenson, B.D. Maliken, E. Gochanour, S. Boukhar, M.M. Yeh, K.V. Kowdley, Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis, J Leukoc Biol 105(5) (2019) 1015-1026.
[14] A. Kroner, A.D. Greenhalgh, J.G. Zarruk, R. Passos Dos Santos, M. Gaestel, S. David, TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord, Neuron 83(5) (2014) 1098-116.
[15] R. Gozzelino, P. Arosio, Iron Homeostasis in Health and Disease, Int J Mol Sci 17(1) (2016).
[16] C. Kaindlstorfer, K.A. Jellinger, S. Eschlbock, N. Stefanova, G. Weiss, G.K. Wenning, The Relevance of Iron in the Pathogenesis of Multiple System Atrophy: A Viewpoint, J Alzheimers Dis 61(4) (2018) 1253-1273.
[17] M. Carpena, B. Nunez-Estevez, A. Soria-Lopez, J. Simal-Gandara, Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications, Nutrients 12(11) (2020).
[18] G. Lee, H. Bae, Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects, Molecules 21(5) (2016).
[19] H. Kim, J.Y. Hong, W.J. Jeon, S.H. Baek, I.H. Ha, Bee Venom Melittin Protects against Cisplatin-Induced Acute Kidney Injury in Mice via the Regulation of M2 Macrophage Activation, Toxins (Basel) 12(9) (2020).
[20] C. Lee, S.S. Bae, H. Joo, H. Bae, Melittin suppresses tumor progression by regulating tumor-associated macrophages in a Lewis lung carcinoma mouse model, Oncotarget 8(33) (2017) 54951-54965.
[21] S. Faissner, M. Mishra, D.K. Kaushik, J. Wang, Y. Fan, C. Silva, G. Rauw, L. Metz, M. Koch, V.W. Yong, Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic, Nat Commun 8(1) (2017) 1990.
[22] S. Recalcati, M. Locati, E. Gammella, P. Invernizzi, G. Cairo, Iron levels in polarized macrophages: regulation of immunity and autoimmunity, Autoimmun Rev 11(12) (2012) 883-9.
[23] C. Gaetano, L. Massimo, M. Alberto, Control of iron homeostasis as a key component of macrophage polarization, Haematologica 95(11) (2010) 1801-3.
[24] X. Chen, C. Guo, J. Kong, Oxidative stress in neurodegenerative diseases, Neural Regen Res 7(5) (2012) 376-85.
[25] G.H. Kim, J.E. Kim, S.J. Rhie, S. Yoon, The Role of Oxidative Stress in Neurodegenerative Diseases, Exp Neurobiol 24(4) (2015) 325-40.
[26] B. Poljsak, D. Suput, I. Milisav, Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants, Oxid Med Cell Longev 2013 (2013) 956792.
[27] R.J. Ward, F.A. Zucca, J.H. Duyn, R.R. Crichton, L. Zecca, The role of iron in brain ageing and neurodegenerative disorders, Lancet Neurol 13(10) (2014) 1045-60.
[28] J. Xu, M.D. Knutson, C.S. Carter, C. Leeuwenburgh, Iron accumulation with age, oxidative stress and functional decline, PLoS One 3(8) (2008) e2865.