[1] Coates B, Kowalchik C. Runner's world running on air: The revolutionary way to run better by breathing smarter. Rodale Books, 2013.
[2] Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157(1):294–323.
[3] Ochiai R. Mechanical ventilation of acute respiratory distress syndrome. J Intensive Care. 2015;3(1):25.
[4] Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med. 1994;149(5):1327–34.
[5] Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.
[6] Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.
[7] Schreiter D, Reske A, Stichert B, Seiwerts M, Bohm SH, Kloeppel R, et al. Alveolar recruitment in combination with sufficient positive end-expiratory pressure increases oxygenation and lung aeration in patients with severe chest trauma. Crit Care Med. 2004;32(4):968–75.
[8] Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805.
[9] Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol. 1984;355:61–75.
[10] Hopkins SR, McKenzie, DC. Hypoxic ventilatory response and arterial desaturation during heavy work. J Appl Physiol (1985). 1989;67(3):1119–24.
[11] Rice AJ, Thornton AT, Gore CJ, Scroop GC, Greville HW, Wagner H, et al. Pulmonary gas exchange during exercise in highly trained cyclists with arterial hypoxemia. J Appl Physiol (1985). 1999;87(5):1802–12.
[12] Reeves JT, Linehan JH, Stenmark KR. Distensibility of the normal human lung circulation during exercise. Am J Physiol Lung Cell Mol Physiol. 2005;288(3):L419–25.
[13] Thornadtsson A, Drca N, Ricciardolo F, Högman M. Increased levels of alveolar and airway exhaled nitric oxide in runners. Ups J Med Sci. 2017;122(2):85–91.
[14] Maeda Y, Fujino Y, Uchiyama A, Matsuura N, Mashimo T, Nishimura M. Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits. Anesthesiology. 2004;101(3):722–8.
[15] Hammerschmidt S, Sandvoss T, Gessner C, Schauer J, Wirtz H. High in comparison with low tidal volume ventilation aggravates oxidative stress-induced lung injury. Biochim Biophys Acta. 2003;1637(1):75–82.
[16] Fuchs H, Mendler MR, Scharnbeck D, Ebsen M, Hummler HD. Very low tidal volume ventilation with associated hypercapnia--effects on lung injury in a model for acute respiratory distress syndrome. PLoS One. 2011;6(8):e23816.
[17] Brack P, Dann S, Wijayantha KG, Adcock P, Foster S. A simple, low-cost, and robust system to measure the volume of hydrogen evolved by chemical reactions with aqueous solutions. J Vis Exp. 2016;114:e54383.
[18] Liu R, Ueda M, Okazaki N, Ishibe Y. Role of potassium channels in isoflurane- and sevoflurane-induced attenuation of hypoxic pulmonary vasoconstriction in isolated perfused rabbit lungs. Anesthesiology. 2001;95(4):939–46.
[19] Nicolaysen G. Perfusate qualities and spontaneous edema formation in an isolated perfused lung preparation. Acta Physiol Scand. 1971;83(4):563–70.
[20] Folkow B, Gurèvich M, Hallbäck M, Lundgren Y, Weiss L. The hemodynamic consequences of regional hypotension in spontaneously hypertensive and normotensive rats. Acta Physiol Scand. 1971;83(4):532–41.
[21] Rowan SC, Rochfort KD, Piouceau L, Cummins PM, O'Rourke M, McLoughlin P. Pulmonary endothelial permeability and tissue fluid balance depend on the viscosity of the perfusion solution. Am J Physiol Lung Cell Mol Physiol. 2018;315(4):L476–84.
[22] Henson PM, Zanolari B, Schwartzman NA, Hong SR. Intracellular control of human neutrophil secretion. I. C5a-induced stimulus-specific desensitization and the effects of cytochalasin. B. J Immunol. 1978;121(3):851–5.
[23] Festing M F, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244–58.
[24] Retamal J, Borges JB, Bruhn A, Cao X, Feinstein R, Hedenstierna G, et al. High respiratory rate is associated with early reduction of lung edema clearance in an experimental model of ARDS. Acta Anaesthesiol Scand. 2016;60(1):79–92.
[25] Goddon S, Fujino Y, Hromi JM, Kacmarek RM. Optimal mean airway pressure during high-frequency oscillation: predicted by the pressure-volume curve. Anesthesiology. 2001;94(5):862–9.
[26] Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–13.
[27] Hatcher D, Watanabe H, Ashbury T, Vincent S, Fisher J, Froese A. Mechanical performance of clinically available, neonatal, high-frequency, oscillatory-type ventilators. Crit Care Med. 1998;26(6):1081–8.
[28] Sari A, Yamashita S, Toriumi T, Nakashima K, Kawata R, Kunihiro M, et al. The effects of inversed ratio ventilation (IRV) on arterial oxygenation during mechanical ventilation in patients with acute respiratory failure. Resuscitation. 1991;22(1):93–101.
[29] Cole AG, Weller SF, Sykes MK. Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med. 1984;10(5):227–32.
[30] Müller-Redetzky HC, Felten M, Hellwig K, Wienhold SM, Naujoks J, Opitz B, et al. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice. Crit Care. 2015;19:23.
[31] Meier A, Baum M. The influence of the internal compliance of a respirator on the alveolar gas distribution. Acta Anaesthesiol Scand Suppl. 1976;63:1–20.
[32] Lindahl S. Influence of an end inspiratory pause on pulmonary ventilation, gas distribution, and lung perfusion during artificial ventilation. Crit Care Med. 1979;7(12):540–6.
[33] Fuleihan SF, Wilson RS, Pontoppidan H. Effect of mechanical ventilation with end-inspiratory pause on blood-gas exchange. Anesth Analg. 1976;55(1):122–30.
[34] Lecuona E, Saldías F, Comellas A, Ridge K, Guerrero C, Sznajder JI. Ventilator-associated lung injury decreases lung ability to clear edema in rats. Am J Respir Crit Care Med. 1999;159(2):603–9.
[35] Stickland MK, Lindinger MI, Olfert IM, Heigenhauser GJ, Hopkins SR. Pulmonary gas exchange and acid-base balance during exercise. Compr Physiol. 2013;3(2):693–739.
[36] Manier G, Moinard J, Téchoueyres P, Varène N, Guénard H. Pulmonary diffusion limitation after prolonged strenuous exercise. Respir Physiol. 1991;83(2):143–53.
[37] Weir EK, Reeves JT, (Eds.), Pulmonary vascular physiology and pathophysiology. Vol. 38. CRC Press, 1988.
[38] Zavorsky GS, Milne EN, Lavorini F, Rienzi JP, Cutrufello PT, Kumar SS, et al. Small changes in lung function in runners with marathon-induced interstitial lung edema. Physiol Rep. 2014;2(6):e12056.
[39] Richard JC, Brochard L, Vandelet P, Breton L, Maggiore SM, Jonson B, et al. Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med. 2003;31(1):89–92.
[40] Oczenski W, Hörmann C, Keller C, Lorenzl N, Kepka A, Schwarz S, et al. Recruitment maneuvers after a positive end-expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome. Anesthesiology. 2004;101(3):620–5.
[41] Vaporidi K, Voloudakis G, Priniannakis G, Kondili E, Koutsopoulos A, Tsatsanis C, et al. Effects of respiratory rate on ventilator-induced lung injury at a constant PaCO2 in a mouse model of normal lung. Crit Care Med. 2008;36(4):1277–83.
[42] Daniels JT. Daniels' running formula. 3rd Edition. Human Kinetics; 2013.
[43] Harkness JE, Turner PV, VandeWoude S, Wheler CL. Harkness and Wagner's biology and medicine of rabbits and rodents. John Wiley & Sons, 2010.