[1] M. Mondal, J. Guo, P. He, D. Zhou, Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother. (2020) 1-14.
[2] P. Msaouel, M. Opyrchal, A. Dispenzieri, K.W. Peng, M.J. Federspiel, S.J. Russell, E. Galanis, Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects. Curr Cancer Drug Targets. 18(2) (2018) 177-187.
[3] S. Bhattacharjee, P.K. Yadava, Measles virus: Background and oncolytic virotherapy. Biochem Biophys Rep. 13 (2018) 58-62.
[4] C.K. Navaratnarajah, N. Oezguen, L. Rupp, L. Kay, V.H. Leonard, W. Braun, R. Cattaneo, The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. Nat Struct Mol Biol. 18(2) (2011) 128-34.
[5] M.M. Kozlov, H.T. McMahon, L.V. Chernomordik, Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci. 35(12) (2010) 699-706.
[6] K.Y.Y. Fung, G.D. Fairn, W.L. Lee, Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic. 19(1) (2018) 5-18.
[7] I. Fregno, E. Fasana, T.J. Bergmann, A. Raimondi, M. Loi, T. Solda, C. Galli, R. D'Antuono, D. Morone, A. Danieli, P. Paganetti, E. van Anken, M. Molinari, ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO. J 37(17) (2018).
[8] S. Veleri, P. Punnakkal, G.L. Dunbar, P. Maiti, Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases. Neuromolecular Med. 20(1) (2018) 18-36.
[9] M. Miaczynska, M. Munson, Membrane trafficking: vesicle formation, cargo sorting and fusion. Mol Biol Cell. 31(6) (2020) 399-400.
[10] M. Shikanai, M. Yuzaki, T. Kawauchi, Rab family small GTPases-mediated regulation of intracellular logistics in neural development. Histol Histopathol. 33(8) (2018) 765-771.
[11] L. Langemeyer, F. Frohlich, C. Ungermann, Rab GTPase Function in Endosome and Lysosome Biogenesis. Trends Cell Biol. (2018).
[12] P. Spearman, Viral interactions with host cell Rab GTPases. Small GTPases. 9(1-2) (2018) 192-201.
[13] E.L. Bearer, C. Wu, Herpes Simplex Virus, Alzheimer's Disease and a Possible Role for Rab GTPases. Front Cell Dev Biol. 7 (2019) 134.
[14] R. Bello-Morales, A.J. Crespillo, A. Fraile-Ramos, E. Tabares, A. Alcina, J.A. Lopez-Guerrero, Role of the small GTPase Rab27a during herpes simplex virus infection of oligodendrocytic cells. BMC Microbiol. 12 (2012) 265.
[15] H.L. Zenner, S. Yoshimura, F.A. Barr, C.M. Crump, Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol. 85(16) (2011) 8012-21.
[16] I.F. de Castro Martin, G. Fournier, M. Sachse, J. Pizarro-Cerda, C. Risco, N. Naffakh, Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat Commun. 8(1) (2017) 1396.
[17] S. Vale-Costa, M. Alenquer, A.L. Sousa, B. Kellen, J. Ramalho, E.M. Tranfield, M.J. Amorim, Influenza A virus ribonucleoproteins modulate host recycling by competing with Rab11 effectors. J Cell Sci. 129(8) (2016) 1697-710.
[18] H. Katoh, Y. Nakatsu, T. Kubota, M. Sakata, M. Takeda, M. Kidokoro, Mumps Virus Is Released from the Apical Surface of Polarized Epithelial Cells, and the Release Is Facilitated by a Rab11-Mediated Transport System. J Virol. 89(23) (2015) 12026-34.
[19] Y. Nakatsu, X. Ma, F. Seki, T. Suzuki, M. Iwasaki, Y. Yanagi, K. Komase, M. Takeda, Intracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells. J Virol. 87(8) (2013) 4683-93.
[20] J.L. Murray, M. Mavrakis, N.J. McDonald, M. Yilla, J. Sheng, W.J. Bellini, L. Zhao, J.M. Le Doux, M.W. Shaw, C.C. Luo, J. Lippincott-Schwartz, A. Sanchez, D.H. Rubin, T.W. Hodge, Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol. 79(18) (2005) 11742-51.
[21] P.P. Gerber, M. Cabrini, C. Jancic, L. Paoletti, C. Banchio, C. von Bilderling, L. Sigaut, L.I. Pietrasanta, G. Duette, E.O. Freed, S. Basile Gde, C.F. Moita, L.F. Moita, S. Amigorena, P. Benaroch, J. Geffner, M. Ostrowski, Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol. 209(3) (2015) 435-52.
[22] M.Q. Yang, Q. Du, J. Goswami, P.R. Varley, B. Chen, R.H. Wang, A.E. Morelli, D.B. Stolz, T.R. Billiar, J. Li, D.A. Geller, Interferon regulatory factor 1-Rab27a regulated extracellular vesicles promote liver ischemia/reperfusion injury. Hepatology. 67(3) (2018) 1056-1070.
[23] Y. Feng, X. Zhong, T.T. Tang, C. Wang, L.T. Wang, Z.L. Li, H.F. Ni, B. Wang, M. Wu, D. Liu, H. Liu, R.N. Tang, B.C. Liu, L.L. Lv, Rab27a dependent exosome releasing participated in albumin handling as a coordinated approach to lysosome in kidney disease. Cell Death Dis. 11(7) (2020) 513.
[24] A. Fraile-Ramos, V. Cepeda, E. Elstak, P. van der Sluijs, Rab27a is required for human cytomegalovirus assembly. PLoS One. 5(12) (2010) e15318.
[25] G. Pidelaserra-Marti, C.E. Engeland, Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor Rev. (2020).
[26] Y. Li, J. He, S. Sui, X. Hu, Y. Zhao, N. Li, Clenbuterol upregulates histone demethylase JHDM2a via the beta2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Cell Signal. 24(12) (2012) 2297-306.
[27] E. Galanis, Therapeutic potential of oncolytic measles virus: promises and challenges, Clin Pharmacol Ther 88(5) (2010) 620-5.
[28] D. Loewe, H. Dieken, T.A. Grein, T. Weidner, D. Salzig, P. Czermak, Opportunities to debottleneck the downstream processing of the oncolytic measles virus, Crit Rev Biotechnol 40(2) (2020) 247-264.
[29] J.R. Teijaro, K.B. Walsh, S. Cahalan, D.M. Fremgen, E. Roberts, F. Scott, E. Martinborough, R. Peach, M.B. Oldstone, H. Rosen, Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection, Cell 146(6) (2011) 980-91.
[30] S. Mehan, S. Rahi, A. Tiwari, T. Kapoor, K. Rajdev, R. Sharma, H. Khera, S. Kosey, U. Kukkar, R. Dudi, Adenylate cyclase activator forskolin alleviates intracerebroventricular propionic acid-induced mitochondrial dysfunction of autistic rats, Neural Regen Res 15(6) (2020) 1140-1149.