1. Garcia, M., et al. Evolution of communication signals and information during species radiation. Nat. Commun. 11, 4970 (2020). doi: 10.1038/s41467-020-18772-3
2. Hamao, S., Yamashita, H., Yamaguchi, N.M. & Ueda, K. Factors affecting the habitat of the Japanese pygmy woodpecker in urban open spaces. Jap. J. Ornithol. 55, 96-101 (2006). doi: 10.2326/JJO.55.96
3. Shiina, K., Hasegawa, O. & Higashi, S. Characteristics of trees excavated by the Japanese pygmy woodpecker Dendrocopos kizuki. Ornithol. Sci. 12, 27-33 (2013). doi: 10.2326/osj.12.27
4. Boswall, J. Woodpecker drumming. British Library, https://www.bl.uk/the-language-of-birds/articles/woodpecker-drumming. The author could not find a year of publication on the page.
5. Spence, S. Drumming with the great spotted woodpecker. Science Connected Magazine, https://magazine.scienceconnected.org/2015/05/drumming-with-the-great-spotted-woodpecker/ (2015).
6. Gutzat, F. & Dormann, C. F. Decaying trees improve nesting opportunities for cavity‐nesting birds in temperate and boreal forests: A meta‐analysis and implications for retention forestry. Ecol. Evol. 8, 8616–8626 (2018). doi: 10.1002/ece3.4245
7. Miles, M. C., Schuppe, E. R., Miller Ligon, R. & Fuxjager, M. J. Macroevolutionary patterning of woodpecker drums reveals how sexual selection elaborates signals under constraint. Proc. R. Soc. B. 285, 20172628 (2018). doi: 10.1098/rspb.2017.2628
8. Schuppe, E. R., Rutter, A. R., Roberts, T. J. & Fuxjager, M. J. Evolutionary and biomechanical basis of drumming behavior in woodpeckers. Front. Ecol. Evol. 9, 478 (2021). doi: 10.3389/fevo.2021.649146
9. Wake Forest University. Woodpecker drumming signals wimp or warrior. ScienceDaily, www.sciencedaily.com/releases/2016/03/160304163603.htm (2016).
10. Sauvain, R. B. & Wermelinger. Bark beetles, beware: The three-toed woodpecker! waldwissen.net, https://www.waldwissen.net/en/forestry/forest-protection/insects/bark-beetles-and-woodpecker (2016).
11. Burivalova, Z., et al. The sound of logging: Tropical forest soundscape before, during, and after selective timber extraction. Biol. Conserv. 254, 108812 (2021).
12. Doherty, T. S., Hays G. C. & Driscoll D. A. Human disturbance causes widespread disruption of animal movement, Nat. Ecol.
& Evol. 5, 513-519 (2021).
13. Rutz, C., et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. & Evol. 4, 1156-1159 (2020).
14. Shaw, R. C. & Harvey, A. Long-term memory for a learned behaviour in a wild bird. Biol. Lett. 16, 20190912 (2020). doi:10.1098/rsbl.2019.0912
15. Ellison, K. S., Ribic, C. A., Sample, D. W., Fawsett, M.J, & Dadisman, J. D. Impact of tree rows on grassland birds and potential nest predators: A removal experiment. Plos One 8, e59151 (2013). doi:10.1371/journal.pone.0059151
16. O’Leary, B. A., Burd, M., Venn, S. E., and Gleadow, R. M.. Bird community recovery following removal of an invasive tree, Ecol. Solu.t Evidence 2, e12080 (2021). doi: 10.1002/2688-8319.12080
17. Cockle, K. L., Martin, K., Bodrati, A., Persistence and loss of tree cavities used by birds in the subtropical Atlantic forest. Forest Ecol. Manag. 384, 200-207 (2017). doi:10.1016/J.FORECO.2016.10.052, Corpus ID: 89124849
18. Lammertink, M., Fernandez, J., Cockle, K. L., Helmeted Woodpeckers roost in decay-formed cavities in large living trees: A clue to an old-growth forest association. The Condor 121, duy016 (2019). doi:10.1093/condor/duy016, Corpus ID: 14648812319. Ilsøe, S. K., et al, Global variation in woodpecker species richness shaped by tree availability, J. Biogeogr. 44 1824-1835 (2017). doi: 10.1111/JBI.13009
20. Poblete, Y., et al. Deforestation patterns shape population structure of the Magellanic woodpecker (Campephilus magellanicus) in southern Chile. Avian Conserv. Ecol. 15, 19 (2020). doi:10.5751/ace-01692-150219
21. Vergara-Tabares, D. L., et al. Gone with the forest: Assessing global woodpecker conservation from land use patterns. Divers. Distrib. 24, 640-651 (2018). doi:10.1111/ddi.12710
22. Manaster, J. Sloth squeak. Scientific American Blog Network http://blogs.scientificamerican.com/psi-vid/2014/04/09/sloth-squeak (2014).
23. Japanese pygmy woodpecker drumming the phone pole, https://www.youtube.com/watch?v=mToxlRltNXs
24. Budka M., Deoniziak K., Tumiel T., and Wona J. T., Vocal individuality in drumming in great spotted woodpecker – A biological perspective and implications for conservation, Plos One, https://doi.org/10.1371/journal.pone.0191716 (2018)
25. Turner K., The structure and function of drumming in the middle spotted woodpecker, Dendrocopos medius, BioOne, Acta Ornithologica, 55(1):129-138 (2020). https://doi.org/10.3161/00016454AO2020.55.1.013
26. Dodenhoff D. J., Stark R. D., Johnson E. V., Do woodpecker drums encode information for species recognition? The Condor, Volume 103, Issue 1, 1 February 2001, Pages 143–150, https://doi.org/10.1093/condor/103.1.143
27. Węgrzyn E. and Leniowski K., Middle spotted woodpecker territory owners distinguish between stranger and familiar floaters based on their vocal characteristics, The European Zoological Journal, Volume 87, Issue 1, 2020, Pages 58-72, https://doi.org/10.1080/24750263.2020.1716088
28. Hokkaido Nature Protection Association (2013). Kyoko-ni motoduku, Dam Kensetsu;
Hokkaido no Dam wo Kensho-suru (Dam Construction based on Fiction; Hokkaido Dam
Construction Cases). Ryokufu Publishers.
29. Ministry of the Environment (2006, May 1). Wind Powel and its impact to birds. MOE. https://www.env.go.jp/nature/yasei/sg_windplant/01/mat06_2.pdf https://www.env.go.jp/nature/yasei/sg_windplant/01/mat06_1-1.pdf
30. Ministry of the Environment. (2011, May 1). Introducing Wind Power and its potential, birds, and landslides. MOE. https://www.env.go.jp/earth/report/h23-03/chpt4.pdf
31. Ohno, K. (2017). The History of Japanese Economy Development: Origins of Private
Dynamism and Policy Competence. Routledge.
32. Ministry of the Environment (2021 July 31) The document on primary environmental consideration on Mihama-shinjo wind farm and the opinion of the document on primary environmental consideration on Mihama-shinjo Wind farm, https://www.env.go.jp/press/108249.html
33. Harashina Y., Koizumi H., ed. Toshi/Chiiki-no jizokukanousei assessment (The sustainable assessment in urban and regional areas), Gakugei Publishers, 2015.
34. Yamagata University, Extinction of wild life, 2020, https://www.id.yamagata-u.ac.jp/EPC/13monndai/17syu/syu.html
35. Symes W. S., Edwards D. P., Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated, Nat. Com., doi:10.1038/s41467-018-06579-2
36. Urban Renaissance Agency (UR), (2021, April 15) Environmental Report, https://www.ur-net.go.jp/aboutus/action/kankyo/e-report/copy_of_index.html
37. The Wild Bird Society (2020, December 15), Written opinion against relaxation of requirements for wind power assessment. WBS. https://www.wbsj.org/activity/conservation/habitat-conservation/wind-power/wind-plants-construction-pj/20201215-fuuryoku/
38. Development project of former telecommunication district of Kamiseya (Kyu-kamiseya-tsu-shin chiku-tochikaihatsujigyou), Report on citizens’ opinion and developer’s comments, https://www.city.yokohama.lg.jp/kurashi/machizukuri-kankyo/kankyohozen/hozentorikumi/assessment/shinaijigyou/90-mokuji/90_jyun_iken.files/0054_20210906.pdf
39. Environmental Assessment Evaluation Report for the development project of Manpukuji district (Manpukuji-tochi-kukakuseirijigyou), Report on citizens’ opinion and developer’s comments, 2001.